PUKYONG

Approximate Solutions and Representation of Feasible Set in Robust Convex Optimization

Metadata Downloads
Alternative Title
로버스트 볼록 최적화에서 근사해와 실행가능한 집합의 재표현에 관한 연구
Abstract
볼록 최적화는 기본적으로 볼록집합으로 정의된 실행 가능한 집합 상에서 볼록함수를 최소화하는 것을 의미한다. 본 논문에서는, 불확실한 데이터를 가지는 서로 다른 제약식(constraint inequality)으로 표현되는 실행 가능한 해집합 상에서의 볼록 최적화 문제에 대해서 연구한다. 로버스트(robust) 접근방법을 이용하여, 이 문제에 대응하는 로버스트(robust) 최적화 문제를 다룬다. 또한, 로버스트(robust) 최적화 문제에 대한 근사해의 특성과 성질을 연구하였다. 나아가서, 로버스트(robust) 최적화 문제에 대한 근사 최적조건과 근사 쌍대정리를 정립하고, 이에 대한 구체적인 예를 제시하여 얻어진 연구 결과들을 검증하였다.
Convex optimization usually means minimizing a convex function over the feasible set defined by the convex set. In this thesis, we investigate the convex optimization problem over the feasible set expressed as a different constraint inequality with uncertain data. Using the robust approach, we treat the robust optimization problem with its counterpart. We also study some characterizations of approximate solutions in robust optimization problems. Furthermore, approximate optimality conditions and approximate duality theorems for robust optimization problems are established, and illustrative examples are given to verify the results.
Author(s)
JIAO LIGUO
Issued Date
2018
Awarded Date
2018.2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/13872
http://pknu.dcollection.net/common/orgView/200000010824
Affiliation
부경대학교 대학원
Department
대학원 응용수학과
Advisor
김도상
Table Of Contents
1 Introduction and preliminaries 1
1.1 Motivation 1
1.2 Some notations and preliminary results 4
1.3 Model statements and solution concepts 7
1.4 Organization of the dissertation 12
2 Some characterizations on quasi α-solutions in robust convex optimization 14
2.1 Introduction and preliminaries 14
2.2 Optimality theorems for quasi α-solutions 14
2.3 Duality theorems for quasi α-solutions 21
3 Quasi (α,ε)-solutions for robust convex optimization with convex inequality constraints 28
3.1 Introduction and preliminaries 28
3.2 Optimality theorems for quasi (α,ε)-solutions 29
3.2.1 Method I 29
3.2.2 Method II 36
3.3 Duality theorems for quasi (α,ε)-solutions 42
4 Quasi ε-solutions in robust convex semidefinite programs 51
4.1 Introduction and preliminaries 51
4.2 Approximate optimality theorems 52
4.3 Approximate duality theorems 67
5 Optimality condition for robust convex optimization with locally Lipschitz inequality constraints 75
5.1 Introduction and preliminaries 75
5.2 Main results 81
5.2.1 KKT optimality theorems 81
5.2.2 An application to quasi ε-solutions in (RCPL) 86
Conclusions 88
References 89
Acknowledgment 96
Degree
Doctor
Appears in Collections:
대학원 > 응용수학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.