Characterization of Oil, Collagen, and Collagen Hydrolysate from Bigeye Tuna (Thunnus obesus) By-products Obtained by Supercritical CO2, Enzymatic, and Subcritical Water Treatment
- Alternative Title
- 눈 다랑어(Thunnus obesus) 부산물로부터 초임계 이산화탄소, 효소 및 아임계 수 처리에 의해 수득한 오일, 콜라겐 및 가수분해물의 특성
- Abstract
- 오일은 초임계 이산화탄소를 사용하여 눈 다랑어(Thunnus obesus) 부산물로부터 추출되었다. 콜라겐은 펩신 및 박테리아 콜라겐 분해 효소를 사용하여 오일이 제거된 잔류물로부터 추출되었으며, 최종적으로 콜라겐을 가수분해하여 기능성 펩티드를 얻기 위해 아임계 가수분해 방법이 사용되었다. 첫 번째 연구는 헥산을 사용하여 추출한 soxhlet 추출을 총 오일의 양으로 고려할 때, 초임계 이산화탄소 추출에 의해 피부에서 85.6%, 비늘에서 83.2% 및 뼈에서 87.7%의 오일을 얻었다. 오일은 24.7-28.3% EPA 및 DHA를 포함하며 27.7-31.5%의 고도 불포화 지방산을 함유하고 있었다. 추출 방법은 EPA와 DHA를 제외하고 지방산 조성에 유의한 영향을 미치지 않았다(p>0.05). 초임계 이산화탄소 추출은 오일의 중금속 함량을 유의하게 감소시켰다(p≤0.05). 색도 및 점도는 헥산 추출보다 초임계 이산화탄소 추출이 나은 결과를 보였다. 또한 산가, 과산화물가 및 유리 지방산가가 헥산 추출법보다 초임계 이산화탄소 추출법이 낮으면 초임계 이산화탄소 추출법이 고품질 오일을 얻는 잠재적인 상업적 방법이 될 수 있음을 제시한다.
오일 추출 공정에서 얻은 잔류물은 아세트산 및 펩신 추출 방법을 사용하여 콜라겐을 추출하는 두 번째 연구에 사용되었다. 껍질에서의 수율은 건조 기준으로 산 용해성 콜라겐에서 13.5±0.6%, 펩신 용해성 콜라겐에서 16.7±0.7%로 나타났다. 산 용해성 콜라겐의 수율은 매우 낮은 반면, 펩신 용해성 콜라겐의 수율은 비늘에서 4.6±0.3%와 뼈에서 2.6±0.3%였다. 추출된 모든 콜라겐은 α1-, α2- 및 β-chain 를 나타내어 I 형 콜라겐임을 나타내었다. 전기영동 연구에서는 콜라겐 사이에 약간의 분자량 차이가 관찰되었다. 삼중 나선구조는 펩신의 소화에 영향을 미치지 않았다. 추출된 모든 콜라겐에서 높은 수준의 이미노산(227-232/1,000 잔기)이 발견되었는데, 껍질보다 비늘과 뼈에서 하이드록시프롤린의 양이 더 많았다. 점도계를 사용하여 시차 주사 열량계 및 열 변성 온도(31.1-32.2℃)를 사용하여 측정된 열전이온도(31.6-33.7℃)는 온대성 및 냉수성 어류 콜라겐보다 높았다. 등전점은 껍질-산 용해성 콜라겐 6.1, 껍질-펩신 용해성 콜라겐 6.4, 비늘-펩신 용해성 콜라겐 5.4 및 뼈-펩신 용해성 콜라겐 5.5로 측정되었다. 따라서 특히 껍질에서 높은 콜라겐 함량 및 추출된 콜라겐의 더 높은 열적 성질은 포유류 콜라겐을 대체할만한 높은 잠재력을 가지고 있음을 제시한다.
세 번째 연구에서는 박테리아성 콜라겐 분해 효소를 이용하여 어류의 껍질에서 콜라겐을 추출하였다. 박테리아성 콜라겐 분해 효소를 얻기 위해 토양으로부터 Bacillus cereus FORC005 및 Bacillus cereus FRCY9-2 박테리아를 분리하였다. 글리세롤과 자당은 각각 FORC005와 FRCY9-2에 적합한 탄소원이었다. 반응 표면 분석법은 최대 콜라겐 분해 효소 생산을 위한 pH, 온도 및 탄소 공급원의 농도를 최적화하기 위해 사용되었다. 온도 및 pH는 각각 FORC005와 FRCY9-2에 의해 콜라겐 분해 효소 생성에 가장 영향을 주는 인자였다. 산 용해성 콜라겐과 결합된 콜라겐 분해 효소 처리에 의한 콜라겐의 총 수율은 FORC005에서 18.8%, FRCY9-2에서 17.7%로 나타났다(건조 물질 기준). SDS-PAGE 밴드 패턴, FT-IR 스펙트럼 및 아미노산 조성은 추출된 모든 콜라겐이 I 형 콜라겐임을 나타냈다. 박테리아에서 생성된 콜라겐 분해 효소는 어류의 껍질에서 콜라겐을 추출할 수 있었다. 본 연구는 콜라겐 분해 효소를 사용하여 어류 껍질에서 콜라겐을 생성하는 대체 방법을 제안한다.
네 번째 연구에서, 눈 다랑어의 껍질 및 콜라겐으로부터 항산화 및 항균 가수 분해물을 얻기 위해 아임계 가수분해 방법이 이용되었다. 기능성 가수분해물 생성을 위한 최적의 온도를 알아내기 위해 압력 50 bar 및 반응 시간 5분 조건하에서 다양한 온도 (150-300℃)로 측정되었다. 가수분해의 정도는 껍질 가수 분해물과 콜라겐 가수 분해물 모두 250 ℃에서 가장 높았다. ABTS 자유 라디칼 소거 활성, DPPH 자유 라디칼 소거 활성, 제 2 철 산화 환원력 및 금속 킬레이트 활성의 4가지 다양한 분석법에 의해 평가된 항산화 활성은 온도가 증가함에 따라 증가하고 280℃에서 가장 높게 측정되었다. 두 가수분해물은 B. cereus, P. putida 및 S. aureus에 대해 항균 활성을 보였으나. 280℃에서 콜라겐 가수분해물이 나타내는 활성이 더 높게 나타났다. 콜라겐 가수분해물의 구조적 아미노산(267.89 mg/ 100 g)은 220 ℃, 유리 아미노산(57.48 mg/ 100 g)은 250℃에서 가장 높았다. 선택된 가수분해물의 분자량 특성은 저 분자량 펩티드 (<600 Da) 및 유리 아미노산이 기능 활성과 관련이 있음을 나타내었다. 따라서 아임계 가수분해로 생성된 어류 껍질 및 콜라겐 가수 분해물은 식품 산업에서 기능성 요소로 사용될 수 있는 높은 잠재력을 가지고 있다.
Oil was extracted from bigeye tuna (Thunnus obesus) by-products using supercritical carbon dioxide; collagen was extracted from the de-oiled residues using pepsin and bacterial collagenolytic protease (CP), and finally subcritical water hydrolysis (SWH) was employed to hydrolyze collagen to obtain functional peptides. In the first study, 85.6, 83.2, and 87.7% of oil was recovered from skins, scales, and bones, respectively, by supercritical carbon dioxide extraction (SE) considering the soxhlet extraction using hexane (HE) to be the total oil. The oils contained 27.7–31.5% polyunsaturated fatty acids including 24.7–28.3% eicosapentaenoic (EPA) and docosahexaenoic acid (DHA). The extraction method did not significantly affect fatty acid composition (p > 0.05) except for EPA and DHA. SE significantly (p ≤ 0.05) reduced the heavy metal content of the oil. The color and viscosity were better with SE than HE. The acid, peroxide, and free fatty acid values were also lower with SE than HE, suggesting that SE may be a potential commercial way to get a higher quality oil.
The residues obtained from the oil extraction process were used in the second study to extract collagen using acetic acid and pepsin extraction methods. The yield of acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from skin were 13.5 ± 0.6% and 16.7 ± 0.7%, respectively, on dry basis. The yields of PSC from scale and bone were 4.6 ± 0.3% and 2.6 ± 0.3%, respectively, while the yields of ASCs were very low. All the extracted collagens showed α1-, α2-, and β-chains, confirming as type I collagen. Slight differences in molecular weight were observed among the collagens in an electrophoretic study. The triple helical structure was not affected by pepsin digestion. A high level of imino acids (227–232/1,000 residues) was found in all the extracted collagens, with a greater amount of hydroxyproline in the scale and bone than in the skin. The thermal transition temperature (31.6–33.7 °C), measured using differential scanning calorimetry and thermal denaturation temperature (31.1–32.2 °C), measured using viscosity, were higher than those of many temperate- and cold-water fish collagens. The isoelectric point were 6.1, 6.4, 5.4, and 5.5 for skin-ASC, skin-PSC, scale-PSC, and bone-PSC, respectively. Therefore, the high collagen contents, especially in the skin, and higher thermal properties of the extracted collagens suggested that they have great potential for use as an alternate for mammalian collagen.
The third study aimed to explore bacterial CP to extract fish skin collagen and characterize the extracted collagen. Two bacteria, Bacillus cereus FORC005 and Bacillus cereus FRCY9-2 were isolated from soil. Glycerol and sucrose were suitable carbon sources for FORC005 and FRCY9-2, respectively. Response surface methodology was employed to optimize pH, temperature (T), and concentration of carbon source for producing maximum CP. The temperature and pH were the most influencing factors for producing CP by FORC005 and FRCY9-2, respectively. The total yield of collagen by FORC005 and FRCY9-2 CP treatments combined with ASC were 18.8 % and 17.7 %, respectively of skin (dry matter basis). The SDS-PAGE band patterns, FT-IR spectra and amino acid compositions indicated that all extracted collagens were type I collagen. The CPs produced from the bacteria were able to extract collagen from fish skin. This study provides an alternative approach for producing collagen from fish skin using CP.
In the fourth study, SWH was applied to obtain antioxidant and antimicrobial hydrolysates from tuna skin and collagen. Different temperatures (150–300 °C) with a pressure of 50 bar or just above the saturation vapor pressure and reaction time (5 min) were employed to find out the optimum temperature for the production of functional hydrolysates. Degree of hydrolysis was highest at 250 °C for both skin hydrolysate (SH) and collagen hydrolysate (CH). Antioxidant activities evaluated by four different assays, i.e., ABTS free radical scavenging activity, DPPH free radical scavenging activity, FRAP, and metal chelating activity increased with increasing temperature and were found to be highest at 280 °C. Both hydrolysates showed antimicrobial activity against B. cereus, P. putida and S. aureus with the higher activity shown by CH at 280 °C. The structural (267.89 mg/100 g) and free amino acids (57.48 mg/100 g) in CH were found to be highest at 220 °C and 250 °C, respectively. Molecular weight profile of selected hydrolysate showed that low molecular weight peptides (600 Da) and/or free amino acids are associated with functional activity. Therefore, fish skin and collagen hydrolysates produced by SWH have immense potential to be used as functional elements in food industries.
- Author(s)
- RAJU AHMED
- Issued Date
- 2018
- Awarded Date
- 2018.2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/13882
http://pknu.dcollection.net/common/orgView/200000010819
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 식품공학과
- Advisor
- Byung-Soo Chun
- Table Of Contents
- CONTENTS I
List of Figures VIII
List of Tables XI
Abstract XIII
Chapter 1 1
General Introduction 1
1.1. Background 1
1.2. Structure and composition of collagen 2
1.3. Role of collagen in animal body 6
1.4. Sources of collagen 6
1.5. Application of collagen and collagen derived products 7
1.6. Global market of collagen 9
1.7. Tuna 12
1.8. Distribution of tuna 13
1.9. Bigeye tuna 16
1.10. Fish by-products 20
1.11. Extraction of collagen from fish by-products 20
1.12. Supercritical carbon dioxide (SC-CO2) method for oil extraction 22
1.13. Subcritical water hydrolysis 27
1.14. Objectives of the thesis 31
1.15. References 32
Chapter 2 43
Quality evaluation of oil recovered from by-products of bigeye tuna using supercritical carbon dioxide extraction 43
2.1. Introduction 43
2.2. Materials and methods 46
2.2.1. Preparation of raw materials 46
2.2.2. SC-CO2 extraction 47
2.2.3. Soxhlet extraction by hexane 49
2.2.4. Evaluation of oil quality 49
2.2.4.1. Color 49
2.2.4.2. Viscosity 50
2.2.4.3. Oil stability analysis 50
2.2.4.4. Fatty acid composition analysis 51
2.2.4.5. Determination of metal content 51
2.2.5. Statistical analysis 53
2.3. Result and discussion 53
2.3.1. Proximate composition of tuna by-products 53
2.3.2. Extraction of oil 56
2.3.3. Evaluation of oil quality 59
2.3.3.1. Color 59
2.3.3.2. Viscosity 59
2.3.3.3. Oil stability analysis 61
2.3.3.4. Fatty acid composition 64
2.3.3.5. Heavy metal content in raw materials and oil 67
2.4. Conclusion 69
2.5. References 70
Chapter 3 79
Extraction and characterization of collagen from the by-products of bigeye tuna (Thunnus obesus) 79
3.1. Introduction 79
3.2. Materials and methods 81
3.2.1. Chemicals 81
3.2.2. Raw materials 82
3.2.3. Collagen extraction from tuna skins, scales, and bones 83
3.2.4. Characterization of collagen 86
3.2.4.1. SDS-PAGE 86
3.2.4.2. Fourier transform infrared spectroscopy 87
3.2.4.3. Amino acid composition 87
3.2.4.4. Determination of denaturation temperature 88
3.2.4.5. Thermal transition temperature measurement 88
3.2.4.6. Solubility of collagens 89
3.2.4.7. Zeta potential analysis 90
3.3. Result and discussion 90
3.3.1. Collagen extraction from skin, scale, and bone 90
3.3.2. Characterization of collagens 92
3.3.2.1. SDS-PAGE 92
3.3.2.2. Fourier transform infrared spectroscopy 95
3.3.2.3. Amino acid composition 98
3.3.2.4. Thermal stability of collagen 102
3.3.2.5. Solubility of collagen at different pHs 106
3.3.2.6. Zeta potential 108
3.4. Conclusion 110
3.5. References 110
Chapter 4 120
Application of bacterial collagenolytic proteases for the extraction of type I collagen from the skin of bigeye tuna (Thunnus obesus) 120
4.1. Introduction 120
4.2. Materials and methods 122
4.2.1. Separation and identification of bacterial strains 122
4.2.2 Production and concentration of the CP from the bacterial species 123
4.2.3. Optimization of enzyme production 126
4.2.4. Fish skin preparation for extraction of collagen 127
4.2.5. Extraction of acid soluble collagen 128
4.2.6. Extraction of collagen using CP 128
4.2.7. Characterization of collagen 129
4.2.7.1. SDS-PAGE 129
4.2.7.2. Fourier transform infrared spectroscopy 129
4.2.7.3. Amino acid composition 130
4.2.8. Assay for CP activity 130
4.2.9 Statistical analysis 131
4.3. Results and discussion 131
4.3.1. Identification of CP producing bacteria 131
4.3.2. Optimization of enzyme production 132
4.3.3. Extraction of collagen 141
4.3.4. Characterization of collagen 143
4.3.4.1. SDS-PAGE 143
4.3.4.2. Fourier transform infrared spectroscopy 145
4.3.4.3. Amino acid composition 146
4.4. Conclusion 150
4.5. References 151
Chapter 5 156
Production of bioactive hydrolysate from bigeye tuna skin collagen using subcritical water hydrolysis 156
5.1. Introduction 156
5.2. Materials and methods 159
5.2.1. Chemicals 159
5.2.2. Raw materials 160
5.2.3. SWH of collagen and skin 160
5.2.4. Determination of degree of hydrolysis 161
5.2.5. Color and pH of collagen hydrolysate 162
5.2.6. Antioxidant activities 164
5.2.6.1. ABTS radical scavenging activity 164
5.2.6.2. DPPH radical scavenging activity 164
5.2.6.3. Ferric Reducing Antioxidant Power assay 165
5.2.6.4. Metal chelating activity 165
5.2.7. Antimicrobial activity 166
5.2.8. Amino acid analysis 167
5.2.9. SDS-PAGE 168
5.2.10. MALDI-TOF spectroscopy of a selected hydrolysate 168
5.3. Result and discussion 169
5.3.1. Degree of hydrolysis 169
5.3.2. Color and pH 170
5.3.3. Antioxidant activity 173
5.3.3.1. ABTS free radical scavenging activity 173
5.3.3.2. DPPH free radical scavenging activity 175
5.3.3.3. Ferric Reducing Antioxidant Power assay 177
5.3.3.4. Metal chelating activity 177
5.3.4. Antimicrobial activity 178
5.3.5. Amino acid analysis in collagen hydrolysate 181
5.3.6. Molecular weight of the selected collagen hydrolysate 182
5.4. Conclusion 186
5.5. References 186
Summary 197
Abstract (In Korean) 201
Acknowledgement 205
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 식품공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.