Fabrication and investigation of Zn thin films doped with Sn or Se
- Alternative Title
- 주석이나 셀레늄을 첨가한 아연 박막의 제작 및 연구
- Abstract
- Zn based nanomaterials have been studied extensively for industrial and scientific applications. In particular, the application of Zn is more useful when Zn is bound with group IV elements such as O, S, and Se. And dopants such as Al, Cu, and Sn, etc. are doped to manipulate the physical and chemical properties of the materials. Among nanomaterials, thin films having a thickness in nanometer range are widely used as solar cells, optoelectronic devices, and lasing materials. The radio frequency (RF) sputtering method has many advantages including high deposition rate, strong adhesion, uniform deposition over large area on the substrate, and easy to control the composition and chemical environment of element in thin films.
In chapter two of this thesis, the fabrication by RF magnetron co-sputtering method and the physical and chemical properties of ZnSn thin films when Sn was doped to Zn thin films are described. First, the thin films with various thickness were prepared at constant Zn and Sn ratio. From the X-ray photoelectron spectroscopy (XPS) results, it was confirmed that the relative atomic ratio of Zn to Sn in the ZnSn thin films and the oxidation states of the atoms were different with Zn and Sn thin films. The conductivity of the ZnSn thin films was found to be higher than that of the monometallic thin films checked by a 4-point probe measurement. As the thickness increased, the conductivity and crystallinity (studied by X-ray diffraction (XRD)) was increased. The topological morphology of the surface was changed which is revealed by atomic force microscope (AFM) and scanning electron microscope (SEM).
In chapter three of this thesis, the characteristics of Sn doped Zn thin films is described. The thin films having a constant thickness was prepared with various relative ratios of Sn. When Sn was doped, the grains of thin films was changed from hexagonal flakes to columnar form which was confirmed by SEM and AFM. The shape change of the grains caused to increase of the contact angle of the thin films. From the results of 4-point probe measurement, the conductivity of the Sn doped Zn films was varied due to the difference of mean free path length of scattering of electrons. When Sn was doped, the grain size increased and the strain decreased. This was revealed by the XRD results. By performing XPS, the relative ratio and oxidation state of Zn and Sn atoms were confirmed. And the presence of impurity oxygen was observed by XPS. Valence band maximum (VBM) was calculated as well using XPS spectra. With the VBM, the relative energy level diagram was proposed using work function (WF) obtained by ultra-violet photoelectron spectroscopy (UPS).
In chapter four of this thesis, the characteristics of Zn selenide thin films is described. In order to investigate the metal chalcogenides of group II-VI semiconductors, the ZnSe thin films with various relative ratios of Se was fabricated by RF magnetron co-sputtering. The relative atomic ratios of Zn and Se were determined by the XPS. From the AFM and SEM, grain growth was observed on the based plane of ZnSe thin films with Se content of 40% or more. The energy dispersive spectroscopy (EDS) were performed to confirm the chemical composition of the grains. Thin films having grains were polar and weakly hydrophilic. From the XRD and 4-point probe results, the thin films were found to be amorphous and relatively small conductivity. The band gap was calculated with the transmittance measured with a UV-vis spectrophotometer. The VBM and WF were obtained by the UPS. Then, the relative energy level was deduced. When the Se content was about 60%, the band gap was the largest among the ZnSe thin films.
Zn를 기반으로 한 나노 물질들은 산업적 그리고 과학적으로 응용되며 활발히 연구 되어왔다. 특히, O 와 S, Se과 같은 VI족 원소들과 화학적 결합을 하였을 때 Zn의 응용성은 더욱 유용해진다. 그리고 Al이나 Cu, Sn등은 나노 물질의 물리적 화학적 성질을 조절하기 위하여 첨가 된다. 이러한 나노 물질들 중에서 두께가 나노미터 수준인 박막은 태양 전지나 광전자 소자, 레이저 물질로 널리 사용되고 있다. 박막 제작 방법들 중, 고주파 (radio frequency, RF) 스퍼터링법의 장점은 증착율이 높고 흡착력이 강하며, 넓은 면적의 기판에 원하는 물질을 균일하게 증착 할 수 있고, 박막 내 원소들의 화학적 환경과 조성을 조절하기 쉬운 점이다.
본 논문의 2장에서는 RF 마그네트론 다중 스퍼터링법을 이용하여 Sn이 첨가 된 ZnSn박막을 제작하고 박막의 물리적 화학적 성질에 대하여 기술하였다. 먼저, Zn와 Sn의 비율을 일정하게 하며 다양한 두께의 박막들을 제작하였다. X-선 광전자 분석 (X-ray photoelectron spectroscopy, XPS) 결과로부터 ZnSn 박막 내 Zn와 Sn의 상대적인 비율과 Zn 박막이나 Sn 박막에 비해 원소들의 산화상태가 변화한 것을 확인하였다. 4침법 (4 point probe) 측정 결과 ZnSn 박막의 전도성은 단일금속 박막에 비해 약 2배 더 높았으며 뿐만 아니라 두께가 증가할수록 전도성과 결정성 (X선 회절 (X-ray diffraction, XRD) 연구 결과)이 향상 되었다. 그리고 원자력현미경 (atomic force microscope, AFM)과 주사 전자 현미경(scanning electron microscope, SEM)을 이용하여 박막 표면의 위상적 형태 변화를 확인하였다.
본 논문의 3장에서는 Sn이 첨가 된 박막의 특징에 대하여 기술하였다. 박막들은 Sn의 상대적 비율을 다르게 하여 동일한 두께로 제작되었다. SEM과 AFM 측정 결과 Sn이 첨가되었을 때, 박막의 입자들이 육각형 조각에서 기둥형태로 변하였다. 입자의 모양 변화는 박막의 접촉 각 증가를 유발하였다. 4침법 측정결과 박막의 전도성은 변하였는데 이는 전자 산란의 평균자유행로가 달라졌기 때문으로 볼 수 있다. Sn이 첨가 되었을 때 입자들의 크기는 커지고 수축응력은 감소하였다. 이는 XRD 결과에 의해 밝혀졌다. XPS 측정으로 Zn와 Sn의 상대적 비율 및 산화상태뿐 아니라 불순물 산소의 존재도 확인 할 수 있었으며, 가전자대 최대준위 (valence band maximum, VBM)를 계산 하였다. 계산된 VBM과 자외선 광전자 분석 (ultraviolet photoelectron spectroscopy, UPS)으로 얻어진 일 함수 (work function, WF)를 이용하여 상대적 에너지 수준 도표를 제안하였다.
마지막 4장에서는 ZnSe 박막의 특징을 기술하였다. II-VI 족 반도체인 이차 금속 칼코젠 화합물을 연구하기 위하여, RF 마그네트론 다중 스퍼터링법으로 Se 함량을 달리하며 ZnSe 박막들을 제작하였다. Zn와 Se의 상대적 원자 비율은 XPS로 확인하였다. AFM과 SEM 측정 결과 ZnSe 박막 내 Se의 비율이 40% 이상일 때 입자가 성장 하였고 입자의 화학적 조성을 확인하기 위하여 에너지 분산 분광법 (energy dispersive spectroscopy, EDS)을 수행하였다. 입자가 성장한 박막들은 약한 친수성이며 극성이었다. XRD와 4침법 측정 결과 박막은 무정형이었고 전도성이 상대적으로 작았다. 띠 간격 (band gap)은 UV-vis 분광기로 측정 된 투과도로부터 계산 되었다. VBM과 WF은 UPS 결과로부터 얻어졌고 상대적인 에너지 레벨을 추정한 결과 Se이 60% 함유 되었을 때 띠 간격이 가장 넓었다.
- Author(s)
- 이석희
- Issued Date
- 2018
- Awarded Date
- 2018.2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/13906
http://pknu.dcollection.net/common/orgView/200000010618
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 화학과
- Advisor
- 강용철
- Table Of Contents
- CHAPTER I. Theories 1
1.1. Radio frequency (RF) magnetron co-sputtering method 1
1.2. Electron emission spectroscopy 7
1.2.1. X-ray photoelectron spectroscopy (XPS) 7
1.2.2. Ultraviolet photoelectron spectroscopy (UPS) 14
1.3. Instrument for analysis of thin films 17
1.3.1. X-ray diffraction (XRD) 17
1.3.2. UV-vis spectroscopy 19
1.3.3. Energy dispersive spectroscopy (EDS) 20
1.3.4. 4-point probe (4pp) 23
1.3.5. Contact angle measurement (CA) 26
CHAPTER II. Investigation of ZnSn thin films with various thickness fabricated by RF magnetron co-sputtering 28
2.1. Introduction 28
2.2. Experimental details 30
2.3. Results and Discussion 34
2.4. Conclusion 52
CHAPTER III. Investigation of Sn doped Zn thin films with various Sn contents fabricated by RF magnetron co-sputtering 53
3.1. Introduction 53
3.2. Experimental details 55
3.3. Results and Discussion 57
3.4. Conclusion 84
CHAPTER IV. Investigation of ZnSe thin films with various Se contents fabricated by RF magnetron co-sputtering 86
4.1. Introduction 86
4.2. Experimental details 88
4.3. Results and Discussion 92
4.4. Conclusion 122
REFERENCES 123
APPENDICES 133
Appendix 1: Procedure for RF magnetron co-sputtering 133
Appendix 2: Baking the RF sputtering chamber 139
Appendix 3: Vent and pump the RF sputtering chamber 141
Appendix 4: Procedure for UV-vis spectroscopy 143
KOREAN ABSTRACT 147
ACKNOWLEDGEMENT 149
- Degree
- Master
-
Appears in Collections:
- 대학원 > 공업화학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.