PUKYONG

On Types of Approximate Pareto Solutions in Nonsmooth Multiobjective Optimization Problems

Metadata Downloads
Alternative Title
비원활 다목적 최적화 문제에서의 파레토 근사해의 형태들에 대한 연구
Abstract
본 논문에서는 비원활 다목적 최적화 문제에서의 파레토 근사해의 형태들에 대한 연구를 하였다.
잘 알려진 가중 스칼라 방법을 사용하여 무한 개의 제약 함수와 무한 개의 목적 함수를 갖는 비원활 볼록 다목적 최적화 문제에서의 두 가지 형태들의 (α, ε)-의사 적절한 유효해를 탐구하였다.
그리고 비원활 볼록 반무한 다목적 최적화 문제에서의 일반화된 (α, ε)-의사 유효해를 소개하였다. Chankhong-Haimes 스칼라 방법을 이용하여 앞서 언급한 해를 조사하였다. 또한 Wolfe 형과 Mond-Weir 형을 포함함 혼합형의 쌍대문제를 정립하고 일반화된 (α, ε)-의사 유효해에 대한 여러가지 쌍대정리들을 증명하였다.
게다가 반무한 및 유한 형태의 비원활 분수 다목적 최적화 문제에서의 국소 및 대역 약 유효 근사해에 대한 연구를 하였다.
적당한 제약상정 하에서 해당하는 다목적 최적화 문제들의 앞서 언급 된 모든 파레토 근사해에 대한 최적조건을 정립하였다.
In this dissertation we discussed about some types of approximate Pareto solutions in nonsmooth multiobjective optimization problems .
We explored (α,ε)-quasi-properly efficient solutions for nonsmooth convex multiobjective optimization problems of two types, i.e. with infinite number of constraints and with infinite number of objective functions, with the help of well-known weighted-sum scalarization method.
We introduced generalized (α,ε)-quasi-efficient solution in nonsmooth convex semi-infinite multiobjective optimization problem. The mentioned solution was explored by using scalarization method due to Chankhong-Haimes. In addition, we formulate Mixed type dual problem (including Wolfe and Mond-Weir types as special cases) and establish several duality theorems for generalized (α,ε)-quasi-efficient solutions.
Besides, we discuss about local and weakly ε-efficient solutions in nonsmooth fractional multiobjective optimization problem for finite and semi-infinite types, respectievly.
Optimality conditions for all mentioned approximate Pareto solutions of corresponding multiobjective optimization problem were established under suitable constraint qualifications.
Author(s)
SHITKOVSKAYA, TATIANA
Issued Date
2018
Awarded Date
2018.2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/13933
http://pknu.dcollection.net/common/orgView/200000010822
Affiliation
부경대학교 대학원
Department
대학원 응용수학과
Advisor
김도상
Table Of Contents
1 Introduction and Preliminaries 1
1.1 Introduction 1
1.2 Preliminaries 6
2 (α,ε)-Quasi-efficient Solutions for Semi-infinite Multiobjective Optimization 12
2.1 Problem Statement and Preliminaries 12
2.2 Relationships between solutions of (SMP) and (Pλ) 17
2.3 ε-Optimality Conditions 21
3 (α,ε)-Quasi-efficient Solutions for Multiobjective Optimization with Infinitely Many Criteria 27
3.1 Problem Statement and Preliminaries 27
3.2 Relationships between solutions of (MP) and (Pλ) 32
3.3 ε-Optimality Conditions 35
4 Generalized Approximate Solutions for Semi-infinite Multiobjective Optimization 40
4.1 Problem Statement and Preliminaries 40
4.2 ε-Optimality Conditions 43
5 Duality for Approximate Solutions in Semi-infinite Multiobjective Optimization 50
5.1 Problem Statement and Preliminaries 50
5.2ε-Weak Duality 53
5.3 ε-Strong Duality 60
6 Approximate Weakly Pareto Solutions in Fractional Multiobjective Optimization Problems 64
6.1 Introduction and Preliminaries 64
6.2ε-Optimality Conditions for Finite Fractional Multiobjective Optimization Problems 70
6.3 ε-Optimality Conditions for Semi-Infinite Fractional Multiobjective Optimization Problems 79
7 Conclusions 84
References 87
Degree
Doctor
Appears in Collections:
대학원 > 응용수학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.