PUKYONG

Profiling of microRNAs in olive flounder (Paralichthys olivaceus) and Epithelioma papulosum cyprini cells following viral hemorrhagic septicemia virus infection, and functional characterization of miR-146a, miR-155 and miR-210

Metadata Downloads
Alternative Title
VHSV 감염에 대한 넙치와 EPC cell의 microRNAs 발현 양상과miR-146a, miR-155, miR-210의 기능 분석
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, 19-25 nucleotides. They play a regulatory role in gene expression at post-transcription level by inhibiting translation through binding to the 3’untranslated region (3’UTR) of messenger RNA (mRNA) in a specific manner. Until now, over thousands of miRNAs were discovered in different species and each of them can regulate hundreds of genes. Based on their tremendous impact on different biological and pathological processes, there is a growing interest in studying miRNAs and their action mechanisms in mammals. Therefore, gaining more understanding of the functions and action modes of miRNAs in fish would be helpful for the development of control measures against diseases.
Viral hemorrhagic septicemia virus (VHSV) is the causative agent of viral hemorrhagic septicemia (VHS) disease causing a substantial loss in aquaculture farms. This study aims exploring the effect of VHSV infection on miRNAs profile in olive flounder (Paralichthys olivaceus) and in Epithelioma papulosum cyprini (EPC) cells. In the experiment of olive flounder, fingerlings were infected with VHSV, and cellular miRNAs expression was analyzed at 0 (control), 6, 12, 24, 48 and 72 h post-infection (h.p.i.) by the high-throughput sequencing. A total of 372 mature miRNAs were identified, and, among which, 63 miRNAs were differentially expressed during VHSV infection. The differentially expressed miRNAs number was significantly increased from 24 h.p.i compared to the number at 6 and 12 h.p.i., suggesting that the alteration of miRNAs expression by VHSV infection may be related to the progression of VHSV disease. The target prediction analysis, the GO enrichment analysis, and the KEGG pathway analysis of the predicted target genes showed that various biological pathways could be affected by VHSV infection through the down-regulation or up-regulation of host miRNAs. In the experiment of EPC cells, a total of 355 conserved miRNAs and three novel miRNAs were identified, and among them, 103 miRNAs were differentially expressed. The number of differentially expressed miRNAs highly increased at 24 hours-post inoculation compared to 3 h.p.i and 12 h.p.i., suggesting that EPC cells might not actively respond to VHSV infection at an early infection period, which can allow viruses to transcribe and translate their genes enough to produce viral particles that can infect another cell. Among the differentially expressed miRNAs, two miRNAs (miR-735 and miR-738) that were reported only in fish species were highly upregulated. Based on the target prediction, they could regulate several immune pathways. Furthermore, the present results showed the upregulation of representative immune regulating miRNAs such as miR-146a, miR-155, and miR-99. The present dynamical changing patterns of differentially expressed miRNAs in response to the progression of VHSV infection suggest that miRNA profile that was analyzed at a one-time point cannot provide enough information for the interpretation of the disease mechanism. These results provide necessary information on the miRNAs related to VHSV infection in olive flounder and EPC cells. Considering the broad effects of miRNAs on various biological pathways, data in this study can be used to interpret the mechanism of VHSV pathogenesis, which, vice versa, can be used to develop control measures against VHSV.
Among the miRNAs responding to VHSV infection in olive flounder and EPC cells, we chose two miRNAs, miR-146a and miR-155, that were most highly increased by VHSV infection in both olive flounder and EPC cells. In mammals, miR-146a is known for its role in the regulation of NF-κb activation by targeting several genes involved in the pathway such as tumor necrosis factor receptor-associated factor 6 (TRAF6). We explored the effect of overexpressing miR-146a via the use of vector harboring the primary transcript of miR-146a or through transfection of miR-146a mimics on TRAF6 expression and VHSV replication. We also characterized the function of miR-155 based on bioinformatics analysis and molecular techniques. Finally, we demonstrated that hypoxia in olive flounder could induce an upregulation of circulating miR-210, and luciferase activity under control of miR-210 promoter under hypoxic condition in naïve and HIF-1α knock-out EPC cells was analyzed.
MicroRNAs (miRNAs) 는 19-25nt의 small non-coding RNA로서 인간을 비롯한 다양한 생물체에서 이미 수 천 종류 이상의 miRNA가 밝혀져 있다. 각각의 miRNA는 많은 수의 유전자를 조절할 수 있으며, 또한 하나의 유전자는 여러 개 miRNA의 target이 될 수 있다. miRNA는 특정한 방식으로 messenger RNA (mRNA)에 결합하여 전사 후 번역을 억제함으로써 유전자 발현을 조절한다. 포유류에서는 miRNA가 생물학적, 병리학적 과정에 미치는 영향을 기반으로 하여 miRNA와 miRNA의 작용기작에 대한 연구가 활발히 이루어지고 있으며, 이러한 연구들을 어류에도 적용하여 miRNA와 miRNA의 작용기작에 대한 이해도를 높이는 것은 어류의 질병 제어 방법의 개발에 도움이 될 것으로 여겨진다. 따라서, 본 연구에서는 전 세계적으로 양식어류에 큰 피해를 일으키고 있는 바이러스성 출혈성패혈증(VHS)의 원인체인 바이러스성 출혈성패혈증 바이러스(VHSV)를 이용하여 VHSV의 감염이 넙치 (Paralichthys olivaceus)와 Epithelioma papulosum cyprini (EPC) 세포의 miRNA의 발현 양상에 미치는 영향을 연구하였다.
넙치 치어를 VHSV에 감염시킨 후 시간대 (0, 6, 12, 24, 48, 72 시간)마다 Next Generation Sequencing (NGS)를 통해 세포내 miRNA의 발현을 분석하였다. 그 결과, 총 372개의 mature miRNA가 확인되었으며, 그 중 63개의 miRNA가 VHSV 감염에 의해 차등 발현되었다. 차등 발현된 miRNA의 발현양이 6, 12시간 째에 비해 24시간 째에 크게 증가한 것으로 보아 VHSV감염에 의한 miRNA 발현 양상의 변화는 질병의 진행과 관련이 있는 것으로 사료된다. 또한, 차등 발현된 63개의 miRNA의 표적 유전자 예측, GO enrichment 분석 및 KEGG 경로 분석을 통해 VHSV의 감염에 의한 숙주의 miRNA 발현 양상 변화로 인해 다양한 생물학적 경로가 영향을 받는다는 사실을 알 수 있었다. 그리고 EPC세포에 VHSV를 감염 시킨 후 시간대마다 miRNA의 발현 양상을 분석한 결과 355개의 conserved miRNA와 3개의 새로운 miRNA가 확인되었다. 그 중 103개의 miRNA가 차등 발현되었는데, 이들의 발현양은 3시간, 12시간 째에 비해 24시간째에 크게 증가하였다. 이것은 EPC세포가 초기 감염기에 적극적으로 반응을 하지 못한 것으로 생각되며, 이러한 현상은 바이러스가 바이러스의 유전자의 발현과 번역을 통해 감염성을 지닌 바이러스 입자를 생성하기에 충분한 시간이라고 판단된다. 차등 발현된 miRNA 중 2 개의 miRNA (miR-735, miR-738)는 어류에서만 보고가 되어 있으며, 이들의 발현도 크게 증가되었으며, 표적 유전자 예측을 통해 이들이 여러가지 면역 경로를 조절하는 것을 확인하였다. 그리고 본 연구의 결과를 통해 miR-146a, miR-155 및 miR-99와 같은 대표적인 면역조절 miRNA의 발현양의 증가도 확인하였다. VHSV의 감염에 의해 차등 발현되는 miRNA의 발현 양상의 변화를 보면, 어떠한 한 시점에서의 miRNA의 분석은 질병의 발생 기작을 해석하기에 불충분하다고 판단된다. 본 연구의 결과를 통해서 VHSV의 감염과 관련된 넙치와 EPC세포의 miRNA의 기초적인 정보를 알 수 있게 되었다. 생물학적 변화에 다양한 영향을 미치는 miRNA의 특성을 고려하였을 때, 본 연구의 결과는 VHSV의 병원성의 발생 기작에 대한 정보와, VHSV의 제어 방법에 대한 정보를 제공할 수 있다고 판단된다.
넙치와 EPC세포에서 VHSV의 감염에 의해 발현이 증가한 miRNA 중에서 발현양이 가장 크게 증가한 2가지 miRNA (miR-146a, miR-155)를 선정하여 본 연구에 사용하였다. 포유류에서 miR-146a는 Tumor necrosis factor receptor associated factor 6(TRAF6)를 포함한 몇몇 유전자를 표적으로 하여 NF-kb의 활성을 조절한다고 알려져 있다. 본 연구에서는 miR-146a를 발현하는 vector와 miR-146a의 mimics의 형질주입을 통한 miR-146a의 과발현이 TRAF6 유전자의 발현과 VHSV의 증식에 미치는 영향을 분석하였다. 또한, 생물정보학적 분석과 분자생물학적 기술을 이용하여 miR-155의 기능을 분석하였다. 마지막으로, 본 연구에서는 빈산소 상태에 놓인 넙치의 혈중 miR-210의 농도가 증가하는 것을 확인했으며, 빈산소 상태의 정상 EPC세포와 HIF-1α가 knock-out된 EPC세포에서 miR-210 프로모터에 의해 조절되는 luciferase의 활성을 분석하였다.
Author(s)
ABDELLAOUI NAJIB
Issued Date
2018
Awarded Date
2018.2
Type
Dissertation
Keyword
microRNAs VHSV Olive flounder
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/13940
http://pknu.dcollection.net/common/orgView/200000010851
Affiliation
부경대학교 대학원
Department
대학원 수산생명의학과
Advisor
김기홍
Table Of Contents
Contents I
Abstract IV
List of tables VI
List of figures VII
General introduction 1
Chapter I. Changes in miRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) 6
INTRODUCTION 7
MATERIALS AND METHODS 9
1.Fish 9
2.Viral infection 9
3.Small RNA libraries constructions and sequencing 9
4.Next-generation sequencing and data analysis 10
5.Differential miRNA expression analysis 10
6.qPCR of differentially expressed miRNAs 10
7.Target prediction and enrichment of differentially expressed miRNAs 11
RESULTS 13
1.Identification of miRNAs in olive flounder 13
2.Differential expression of miRNAs during viral infection by VHSV 16
3.qPCR of differentially expressed miRNAs 21
4.Target prediction and enrichment of differentially expressed miRNAs 22
DISCUSSION 25
Chapter II. Viral hemorrhagic septicemia virus (VHSV) infection-mediated sequential changes in mirnas profile of Epithelioma papulosum cyprini (EPC) cells 28
INTRODUCTION 29
MATERIALS AND METHODS 31
1.Cell culture and virus 31
2.RNA extraction and small RNA library construction and sequencing 31
3.High-through sequencing and data analysis 31
4.Analysis of differentially expressed miRNAs 32
5.qPCR of differentially expressed miRNA 32
6.Target prediction of differentially expressed miRNAs and gene ontology 33
RESULTS 35
1.Identification of miRNAs in EPC cells 35
2.Differentially expressed miRNAs 36
3.Real-time PCR of differentially expressed miRNAs 40
4.Target prediction and gene ontology of differentially expressed miRNAs 41
DISCUSSION 44
Chapter III. Effect of miR-146a on VHSV replication 47
INTRODUCTION 48
MATERIALS AND METHODS 50
1.Cell culture and virus 50
2.miRNA and plasmid construction 50
2.1.Precursor miRNA prediction 50
2.2.Prediction of miR-146a target 50
2.3.Construction of plasmid expressing pri-mir-146a and TRAF6-3’UTR 51
3.Construction of sponge miRNA for miR-146a 51
4.Transfection of cells and generation of stable cells expressing miR-146a, sponge miRNA, TRAF6-3UTR, and TRAF6-3UTR-SDM 52
5.Knockout of TRAF6 in EPC cells using clustered regularly interspaced short palindromic repeats (CRISPR) RNA-guided Cas9 nucleases technique 53
5.1.Construction of vector expressing Cas9 and gRNA 53
5.2.Generation of TRAF6 knockout cells (ΔTRAF6) 54
6.Luciferase assay 54
7.RNA extraction and qPCR 54
8.Plaque assay 55
RESULTS 59
1.Prediction of primary miRNA 146 a (pri-mir-146a) 59
2.Construction of plasmid pc-pri-mir-146a 60
3.Validation of sponge miRNA efficiency 61
4.Effect of sponge miRNA targeting miR-146a and miR-146a expressing vector on replication of VHSV 62
5.MiR-146a regulate TRAF6 expression in EPC cells 64
6.TRAF6 regulates type I interferon response pathway 66
6.1.Knockout of TRAF6 in EPC cells 66
6.2.Effect of knockout of TRAF6 on type I interferon response 66
DISCUSSION 68
Chapter IV. miR-155 and its role on type I interferon response 71
INTRODUCTION 72
MATERIALS AND METHODS 74
1.Cells culture 74
2.MiRNA expression and plasmid construction 74
2.1.Prediction of miRNA precursor 74
2.2.Cloning and construction of plasmid expressing miR-155 74
2.3.Construction of plasmid expressing miR-155 based on flanking regions of zebrafish mir-30e 75
2.4.Transfection of EPC cells and generation of stable cells expressing miR-155 75
3.In-vivo experiment 76
4.RNA extraction and real-time RT-PCR 76
RESULTS 80
1.Prediction of primary mir-155 in EPC cells 80
2.Generation of plasmid expressing mature miR-155 and overexpression of miR-155 in EPC cells 81
3.Analysis of type I interferon response in olive flounder 82
DISCUSSION 84
Chapter V. Hypoxia-responsive miRNA-210 and study of its promoter 86
INTRODUCTION 87
MATERIALS AND METHODS 89
1.Fish and experimental design 89
2.Extraction of RNA from serum and quantitative real-time polymerase chain reaction (Q-PCR) 89
3.Extraction of RNA from tissues and Q-PCR 90
4.Promoter analysis of miR-210 in EPC cells 90
4.1.Bioinformatics analysis of miR-210 promoter 90
4.2.Plasmid construct 91
4.3.In vitro luciferase expression 91
RESULTS 93
1.Levels of circulatory miRNAs 93
2.Expression of hypoxia-related genes 93
3.MiR-210 promoter is under hypoxia control 94
3.1.Bioinformatic characterization of miR-210 94
3.2.Functional analysis of miR-210 promoter 95
DISCUSSION 98
Summary 101
Abstract in english 104
Acknowledgment 107
References 109
Supplements 132
Degree
Doctor
Appears in Collections:
대학원 > 수산생명의학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.