PUKYONG

분무공정을 이용한 다공성 니켈 분말 및 니켈 기반 촉매 구조체 제조에 관한 연구

Metadata Downloads
Abstract
Porous chemical catalyst powder is produced through a mechanical alloying process and aluminum selectively leached by NaOH leaching method to produce a porous catalyst powder. However, incomplete leaching can produce a low-purity porous catalyst powder. Therefore, research has been conducted on the possibility of producing high purity catalyst powder by minimizing impurities remaining in the preparation of catalyst powder using a pore-forming agent. In this study, we have studied the preparation of catalyst structure based on Ni foam through the preparation of porous nickel catalyst powder using nickel powder. Porous nickel oxide powders were prepared by the spray pyrolysis process using pore–former agent and nickel salt, followed by reduction heat treatment to prepare porous nickel powder. In order to prepare the catalyst structure, porous nickel powder was coated on the surface of Ni foams by electrostatic spraying process, followed by a reduction heat treatment to synthesize porous nickel oxide powder coated catalyst structure. In order to observe the characteristics of the structure, the porous catalyst powder and the catalyst structure were heat treated at 400°C, 600°C and 800°C. and were confirmed to be used with excellent catalytic efficiency through gas chromatography. The degree of adhesion of the catalyst powder on each heat treated Ni foam was verified by the adhesion on test. The XRD analysis was used to confirm the nickel phase, and the microstructure of the porous catalyst powder was analyzed by the FE-SEM.
Author(s)
백성현
Issued Date
2018
Awarded Date
2018.2
Type
Dissertation
Keyword
Dispersion Polymerization Polystyrene beads Porous Catalyst powder Porous Nickel Powder
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/14070
http://pknu.dcollection.net/common/orgView/200000010680
Affiliation
부경대학교 대학원
Department
대학원 금속공학과
Advisor
왕제필
Table Of Contents
목차 i
초록 iii
1. 서론 1
1.1 연구배경 2
2. 이론적 배경 3
2.1 다공성 소재의 정의 및 적용분야 3
2.2 수소 첨가 반응용 촉매 분말 4
2.2.1 Raney Nickel의 제조 4
2.2.2 수소 첨가 반응용 촉매 시장 5
2.3 분무열분해 공정을 이용한 다공성 분말 제조 방법 5
2.4 기공형성제 제조를 위한 고분자 중합 공정 8
2.5 분무열분해 공정 10
2.5.1 분무열분해법의 기본원리 10
2.5.2 분무열분해 액적발생장치 10
2.5.3 분무열분해 반응부 12
2.6 정전 분무 공정 13
3. 실험 방법 14
3.1 분산중합에 의한 기공형성제 제조 14
3.2 다공성 분말 제조 17
3.2.1 분무열분해(Spray pyrolysis) 17
3.3 촉매 반응기 18
3.4 다공성 분말 촉매 구조체 제조 21
3.5 촉매 구조체 부착성 시험 22
4. 실험 결과 및 고찰 23
4.1 기공형성제 제조 23
4.2 다공성 촉매분말 제조 28
4.3 다공성 니켈 분말의 촉매 특성 34
4.4 촉매 구조체 제조 36
4.5 다공성 촉매 구조체의 환원 열처리 온도에 따른 부착성 시험 43
4.6 다공성 촉매 구조체 수소 첨가반응 효율성 평가 45
5. 결론 47
참고문헌 48
Degree
Master
Appears in Collections:
산업대학원 > 금속공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.