PUKYONG

연료전지 시스템의 공정 설계와 CFD를 통한 촉매사용 탈황반응기의 설계 및 운전 최적화

Metadata Downloads
Abstract
Environmental pollution from diesel ship is very serious. To reduce pollution, we consider fuel cell which can replace diesel engine. For small boat, fuel cell can operate main power and for large vessel, it can use auxiliary power unit. Desulfurize system is very important for using fuel cell, because sulfur compuund influence catalyst poison around low concentration, 1 ppm. So in this study, we performed diesel desulfurization reactor design by numerical analysis. This study is divided four step. The first step is basic reactor design. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The second step is reacor scale up and oprating optimization. Using experimental results and the adsorption kinetics theory, the adsorption rate of sulfur in diesel was estimated and verified by numerical analysis. By analyzing the performance of desulfurization according to reactor size, the optimal reactor size was determined. Through maximization of processed diesel amount, optimal diesel flow rate was determined. Regeneration process was also confirmed for the obtained optimal reactor size. At the third step, designed process simulation of 100 kW fuel cell system and desulfurize module for adapting fuel cell system. In this step, we operate the HYSYS for modeling process simulation as well as numerical analysis. For desulfurizing module, we performed modeling and optimization to prevent the poisoning effect. According to heat transfer analysis between desulfurize reactors, we check the distance influence from other reactors. In this results, Design change of reactor is not necessary, because recycling diesel is already desulfurized and it mixed. So, input concentration is reduced. To operating TSA process, we get the fluidity of process because less sulfur amount than adsorption capacity of sulfur is adsorbed by a reactor. Finally, heat interference of reactors is not occurred short distance of reactors. This results will be contribute the fuel cell system which can utilize new and renewable energy source, and desulfurize module design is contribute the basic of clean petrochemical technology besides fuel cell system.
Author(s)
최창용
Issued Date
2018
Awarded Date
2018.2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/14121
http://pknu.dcollection.net/common/orgView/200000010800
Affiliation
부경대학교 대학원
Department
대학원 화학공학과
Advisor
임도진
Table Of Contents
목차 i
List of Figures iv
List of Tables vii
Abstract viii
I. 서론 1
II. 이론 5
1. 전산 유체 역학 5
2. 공정 시뮬레이션 5
3. TSA공정 6
4. 연료전지 7
III. 실험방법 8
1. CFD를 이용한 1 kW급 MCFC 탈황반응기의 기본설계 8
1.1. 흡착 탈황반응기의 운영공정 8
1.2. 흡착 탈황반응기의 모델형상 및 격자구성 9
1.3. 디젤 탈황반응기 설계의 주요 변수 12
2. 100 kW급 MCFC 가동을 위한 탈황반응기의 상세 설계 13
2.1. 탈황용 흡착제 및 흡착제 포화도에 따른 흡착 속도 식 도출 13
2.2. 흡착탈황반응기의 모델형상 및 격자구성 13
2.3. 흡착탈황반응기의 scale up 및 디젤유량 결정 16
3. 연료전지 시스템의 공정설계와 디젤탈황모듈 단위공정의 CFD기반 설계 및 최적화 17
3.1 MCFC 시스템 전체 공정 17
3.2 탈황반응기의 기본 설계 21
3.3 TSA공정을 이용한 탈황반응기의 흡착, 재생공정 22
3.4. 탈황반응기의 배치초건 결정 24
3.5. 탈황모듈에 대한 공정설계 26
3.6. 반응기 모델의 주요 변수 및 지배방정식 27
IV. 결과 및 고찰 29
1. CFD를 이용한 1 kW급 MCFC 탈황반응기의 기본설계 29
1.1. 반응기 내부 유속 및 압력강하 예측 29
1.2. 반응기 유량에 따른 흡착 성능 분석 30
1.3. 반응기 크기 변화에 따른 흡착제거 반응기 설계 33
1.4. 퍼지가스 유량에 따른 흡착제 재생성능 분석 36
1.5. 반응기 크기 변화에 따른 재생공정의 영향 40
1.6 반응기 단열성능에 따른 흡착제 재생성능 분석 42
1.7. 비정상상태 분석을 통한 흡착제 재생 소요시간 예측 44
2. CFD를 이용한 100kW MCFC용 탈황반응기의 상세설계 46
2.1. 흡착반응속도 식 도출 46
2.2. 반응기 scale up에 따른 유량 증가의 영향 해석 50
2.3. 디젤 유량에 따른 탈황성능 분석 및 최적화 52
2.4. 흡착제 재생 조건 분석 57
3. 연료전지 시스템의 공정설계와 디젤탈황모듈 단위공정의 CFD기반설계 및 최적화 60
3.1. MCFC 시스템의 전체 공정 시뮬레이션 60
3.2. 탈황반응기의 기본 설계 63
3.3. 탈황모듈의 TSA공정 운용 66
3.4. 탈황반응기 사이의 열 전달 해석 70
V. 결론 73
Ⅵ. 참고문헌 76
Degree
Master
Appears in Collections:
산업대학원 > 응용화학공학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.