가속도 센서와 자이로 센서의 융합을 통한 신경망 기반 보행 유형 판별에 관한 연구
- Alternative Title
- A Study on Discrimination of Gait Pattern Based on Neural Network using Sensor Fusion of Acceleration Sensor and Gyro Sensor information
- Abstract
- Recently, many countries including Korea are becoming an aging society and thus interests in health monitoring have been increasing. People are seeking more efficient and convenient methods for confirming their health status. In addition, IoT (Internet of Things) technology has been actively developed to make an instant diagnosis.
This thesis suggests a gait pattern discrimination method by collecting gait data using an acceleration sensor and gyro sensor via wireless Internet such as WiFi. A build-in module with the acceleration and gyro sensors was inserted into a sole of both shoes and the straight distance was measured with usual walking.
After collecting gait data including the x, y and z coordinates associated with the acceleration and gyro sensors via WiFi, the gait data are converted into sensor values based on the earth gravity and the acceleration data are converted into position values. These values are used for extracting one step for walking that is a graphical form.
The suggested research demonstrates the development of the gait pattern discrimination method by using a simple neural network for judging gait (i.e. toe-in, normal, and toe-out). After measuring the sensor data of both shoes of several test subjects, a series of gait data for one step of walking is used for learning of a neural network model.
Experimental results show that the suggested method for gait analysis can judge walking patterns as the toe-in, normal and toe-out gait. It is believed that this method can help people to get an early diagnosis if they have problems with their gait patterns.
- Author(s)
- 정기민
- Issued Date
- 2018
- Awarded Date
- 2018. 8
- Type
- Dissertation
- Keyword
- gait gait pattern IoT neural network gait information sensor fusion
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/14589
http://pknu.dcollection.net/common/orgView/200000109091
- Alternative Author(s)
- JEONG KIMIN
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 제어계측공학과
- Advisor
- 이경창
- Table Of Contents
- 목차 i
그림목차 iii
표 목 차 v
Abstract ⅵ
Ⅰ. 서 론 1
1.1 연구의 필요성 1
1.2 보행 정보 검출 연구 동향 3
1.3 연구 목적 5
Ⅱ. 보행 및 학습방법 6
2.1 보행 6
2.2 학습방법 11
2.2.1 데이터 전처리 11
2.2.2 뉴럴 네트워크 13
Ⅲ. 보행 유형 정보 수집 시스템 설계 21
3.1 보행 유형 정보 수집 방법 설계 21
3.1.1 시스템 개념 설계 21
3.2 보행 유형 정보 수집 알고리즘 29
3.2.1 보행 정보 수집 방법 29
3.2.2 보행 유형 검출방법 34
Ⅳ. 보행 유형 정보 판단 방법 구현 및 평가 44
4.1 보행 유형 판단 방법 구현 및 시스템 구성 44
4.1.1 육안 판별 44
4.1.2 족적데이터 측정을 통한 판별 46
4.2 보행 유형 판단을 위한 학습 방법 구현 50
4.3 보행 유형 판단 실험 평가 및 결과 55
Ⅴ. 결 론 62
참고문헌 63
- Degree
- Master
-
Appears in Collections:
- 대학원 > 제어계측공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.