PUKYONG

일반화추정방정식에서 결측대체 효율성 연구

Metadata Downloads
Abstract
Comparing with using cross-sectional data, we can estimate the parameters more efficiently using panel data such as repeated measured data (Hsiao, 1985). In many medical research, we often try to collect repeatedly measured patient data over periods in order to learn their time trend if any. However, while collecting the data over time, there can be missing values at some time points for several reasons. Their missing mechanism can be also vary from MCAR(Missing Completely at Random), MAR(Missing at Random), and NMAR(Not Missing at Random) (Little and Rubin, 2002).
In this thesis, we want to investigate and compare the efficiency of several missing value imputation methods while we fit the generalized estimating equation models for panel data. We conducted simulation studies using several scenarios and analyzed real data using KOSCO (The Korean Stroke Cohort for functioning and rehabilitation) data.
We conducted the simulation study using simulation data for several scenarios and applied the idea to real data using KOSCO (The Korean Stroke Cohort for functioning and rehabilitation) data.
The results show that multiple imputation works best in terms of bias whether the missing mechanism is MCAR, MAR or NMAR.
Author(s)
김승찬
Issued Date
2018
Awarded Date
2018. 8
Type
Dissertation
Keyword
Panel data Missing data MCAR MAR NMAR GEE KOSCO
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/14695
http://pknu.dcollection.net/common/orgView/200000116869
Affiliation
부경대학교 대학원
Department
대학원 통계학과
Advisor
노맹석
Table Of Contents
표 차례 ⅲ
그림 차례 ⅴ
제 1장 서론 1
제 2장 연구방법 3
2.1 일반화추정방정식 3
2.1.1 일반화추정방정식 소개 3
2.1.2 독립추정방정식 6
2.1.3 일반화추정방정식 7
2.2 결측 자료 10
2.2.1 결측 구조 10
2.2.2 결측 패턴 12
2.2.3 결측 처리 방법론 13
제 3장 연구자료 20
3.1 자료 소개 20
3.2 결측 패턴 23
3.3 실제자료 분석 27
3.3.1 연속형 자료 28
3.3.2 순서형 자료 30
제 4장 모의실험 33
4.1 모의실험 설계 33
4.2 모의실험 결과 39
4.2.1 연속형 자료 39
4.2.2 순서형 자료 53
제 5장 결론 66

참고문헌 68
부록1 KOSCO 연구 중 본 논문 분석에 사용된 자료 72
부록2 결측 대체 방법론 별 GEE 분석을 위한 R코드 73
Degree
Master
Appears in Collections:
대학원 > 통계학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.