PUKYONG

1D-3D 결합을 이용한 디젤엔진의 비정상 가스유동 해석

Metadata Downloads
Abstract
To meet the regulations on emissions of environmental pollutants from ships, air pollution control devices were installed or dual fuel engines were used. The dual fuel engines should install explosion relief valves in the intake and exhaust systems because they use gas fuel. In order to install air pollution control devices or explosion relief valves in the intake and exhaust systems and to predict their performance, it is necessary to analyze the gas flow of the entire engine system. A gas flow analysis of the entire engine system in a 3D(three-dimensional) format needs a high-resolution workstation and an enormous amount of time for the computation. A gas flow analysis in a 1D(one-dimensional) format has a high-speed computing and high accuracy in a straight pipe, but poor accuracy in complex geometries such as curved pipes, tapered pipes and pipe junctions, etc. Therefore 1D-3D coupling format is needed for the analysis of unsteady gas flow in diesel engines. In this paper, 1D-3D coupling algorithm suitable for the analysis of unsteady gas flow in diesel engines was developed to analyze the entire diesel engine system and save computational time. The 1D-3D coupling algorithm was coded using UDFs(User-Defined Functions), and the MOC(method of characteristics) and the commercial CFD(computational fluid dynamics) code, ANSYS FLUENT R15.0 were used to couple 1D and 3D. An unsteady gas flow analysis was performed using the 1D-3D coupling algorithm for a diesel engine and the experimental results were compared for validation. The 1D-3D coupling gas flow analysis was able to compute complex geometries into a 3D zone, and it computed about 300 times faster than the 3D gas flow analysis. The unsteady gas flow analysis using 1D-3D coupling algorithm was expected to be used to analyze accurate results for the cylinders, intake and exhaust systems of diesel engines to save computational time.
Author(s)
공경주
Issued Date
2021
Awarded Date
2021. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2103
http://pknu.dcollection.net/common/orgView/200000373271
Affiliation
부경대학교 대학원
Department
대학원 기계시스템공학과
Advisor
고대권
Table Of Contents
Ⅰ. 서론 1
1. 연구 배경 및 필요성 1
2. 선행 연구 및 연구 목적 4
Ⅱ. 이론 해석 7
1. 특성곡선법 7
가. 특성곡선 7
나. 질량 유량 12
다. 실린더의 질량 평형 14
라. 밸브를 통과하는 가스유동 15
마. 열린 끝단 경계조건 16
2. 층류 유량계의 평균 질량 유량 19
3. 시간 간격 20
4. 반사파의 발생 21
Ⅲ. 파이프계의 1D-3D 결합 가스유동 해석 23
1. 모델링 23
2. 격자 의존성 28
3. 파이프계의 1D-3D 결합 알고리즘 31
4. 계산 결과 및 고찰 35
가. 계산 시간 35
나. 타당성 검증 36
Ⅳ. 타당성 검증을 위한 디젤엔진 실험 43
1. 실험 장치 및 방법 43
2. 불확실성 분석 47
3. 실험 결과 및 고찰 49
Ⅴ. 디젤엔진의 1D 가스유동 해석 55
1. 모델링 55
2. 해석 방법 57
3. 계산 결과 및 고찰 61
가. 질량 유량 및 유량계수 61
나. 실린더 압력 64
다. 흡·배기관 압력 72
Ⅵ. 디젤엔진의 3D 가스유동 해석 79
1. 모델링 79
2. 계산 결과 및 고찰 83
Ⅶ. 디젤엔진의 1D-3D 결합 가스유동 해석 85
1. 모델링 85
2. 디젤엔진의 1D-3D 결합 알고리즘 89
3. 시간 간격 109
4. 계산 결과 및 고찰 111
가. 질량 유량 및 유량계수 111
나. 계산 시간 113
다. 실린더 압력 115
라. 흡·배기 포트 123
마. 흡·배기관 압력 129
Ⅷ. 결론 139
참고 문헌 140
부록 154
Degree
Doctor
Appears in Collections:
대학원 > 기계시스템공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.