PUKYONG

Optimum Bioconversion of Flavonoids from Germinated Tartary Buckwheat (Fagopyrum tataricum Gaertn.) using Response Surface Methodology

Metadata Downloads
Abstract
In this study, the flavonoid content of tartary buckwheat was improved through germination, optimized extraction, and biotransformation.
Initially, the germination conditions were controlled and changed to increase flavonoids tartary buckwheat sprouts. Excluding the primary conditions of moisture, oxygen, and temperature, the experiment was conducted by varying the intensity of light that can affect the formation of trace elements. The intensity of light varied from 0 to 18,000 lux. The contents of rutin, quercetin, myricetin, and kaempferol tended to increase until the light intensity reached 6,000 lux. In a similar trend, the contents of total flavonoids polyphenols content also increased, as did antioxidant activity. However, the antidiabetic and anticholesterol activities, which measure physiological activity through enzyme inhibitory activity, decreased. Different substances other than flavonoids displayed anti-diabetic and anti-cholesterol action, unlike antioxidant activity. Using the above conditions, the production conditions for tartary buckwheat sprouts were set using the smart farm system to enable mass production. In the smart farm system, for products that can be used as food, conditions that could inhibit the growth of harmful microorganisms like mold, various conditions to control moisture, and chlorine disinfection conditions were different. Ultimately, a defined buckwheat density and slope that allowed sufficient moisture to be drained were established as the optimal conditions. Additional chlorine disinfection did not significantly affect the yield. Measurements of flavonoid contents revealed no differences according to each condition.
RSM was used to establish optimal conditions for extracting flavonoids from cultivated tartary buckwheat sprouts. Temperature, ethanol concentration, and extraction time were set as independent variables, and values were obtained through 15 experimental conditions using the Box-Benhen Design. The model set through each experiment presented a value that was sufficient to explain each content. The conditions enabling maximal yields of rutin, quercetin, and myricetin were extraction for 6.62 h using 69.13% ethanol at 51.03°C. The predicted values were 808.467 μg/mL for rutin, 193.296 μg/mL for quercetin, and 37.36 μg/mL for myricetin. As verification, 10 repeated experiments revealed a slightly lower value that was sufficiently similar to the predicted value.
Four strains were isolated from a buckwheat field in Pyeongchang to increase the content of flavonoids through bioconversion using the extracted flavonoids or to obtain flavonoids having different functionalities. Among the four strains, 3P-1 fermented flavonoids. The strain was likely a Bacillus sp. When 3P-1 was used for fermentation in a medium containing 200 ppm quercetin, the content of quercetin gradually decreased and the amount of rutin increased for a certain period and then decreased. The molecular weight was determined by HPLC/MS. Analyses using various conditions revealed quercetin-3-O-glucoside as the most suitable compound.
본 연구에서는 타타리메밀을 이용하여 발아, 추출 최적화, 생물전환을 통해 있는 플라보노이드 함량의 증진시키고자 하였다.
첫번째 연구에서는 발아 조건을 조절하여 타타리메밀싹을 제조하는 과정에서부터 플라보노이드의 햠량을 높일 수 있도록 발아 조건을 달리하여 실험을 진행하였다. 기본적인 요건인 수분, 산소, 온도를 제외하고 미량성분 형성에 영향을 줄 수 있는 빛의 세기를 달리하여 실험을 진행하였다. 빛의 세기는 0 lux 에서부터 18,000 lux까지 달리 하였고, 실험 결과 루틴, 쿼세틴, 미르세틴, 캠페롤의 함량은 6,000 lux에 도달할 때까지는 증가하는 경향을 나타내었다. 그리고 유사한 경향으로 총 플라보노이드 함량, 폴리페놀 함량도 증가하였고, 항산화 활성도 같이 증가하였다. 하지만, 효소 저해 활성을 통해 생리활성을 측정하는 항당뇨, 항콜레스테롤 활성은 감소하는 반대의 경향을 나타내었다. 이는 항산화 활성과는 다르게 항당뇨, 항콜레스테롤 작용하는 것이 플라보노이드 외의 다른 물질임을 알 수 있었다.
위의 조건들을 활용하여 대량 생산이 가능하도록 스마트팜 시스템을 이용한 타타리메밀싹 생산 조건을 설정하였다. 스마트팜 시스템에서는 식품으로 사용할 수 있는 제품으로의 생산을 위하여 곰팡이 등의 유해균 증식을 저해할 수 있는 조건을 찾았고, 수분을 조절할 수 있는 다양한 조건과 염소 소독 조건을 달리하여 실험을 진행하였다. 그 결과 일정량의 메밀 밀도를 가지고, 수분이 충분이 배수될 수 있는 기울기가 적합한 조건을 설정하였고, 추가적인 염소소독은 수율에 큰 영향을 미치지 않았다. 각 조건에 따른 플라보노이드 함량을 측정한 결과, 각 조건에 따라 함량에는 차이가 없었다.
재배된 타타리메밀싹에서 플라보노이드를 추출하기 위한 최적 조건을 설정하기 위하여 반응표면 분석법을 사용하였다. 독립변수로 온도, 에탄올농도, 추출 시간을 설정하였고, Box-Benhen Design을 통해 15가지의 실험 조건을 통해 값을 얻었다. 각 실험을 통해 설정된 모델은 각각의 함량의 설명하기에 충분한 값을 제시하였고, 최종적으로 루틴, 쿼세틴, 미르세틴의 함량을 최대화할 수 있는 조건으로는 51.03℃에서 69.13%의 에탄올을 이용하여 6.62시간동안 추출하는 것이었다. 이에 예측된 값은 루틴이 808.467 μg/mL, 쿼세틴은 193.296 μg/mL, 미르세틴은 37.36 μg/mL이었다. 이를 검증하기 위하여 10번의 반복 실험을 통해서 진행한 결과, 조금 낮은 값이 측정되었지만 충분이 예측값과 유사한 수치를 나타내었다.
추출된 플라보노이드를 이용하여 생물전환을 통해 플라보노이드의 함량을 증진시키거나, 다른 형태의 기능성을 가지는 플라보노이드를 얻기 위하여 평창의 메밀 밭에서 4가지의 균주를 분리하였다. 4가지의 균주 중에서 플라보노이드를 발효하는 균주는 Bacillus 속으로 추측이 되는 3P-1 이었다. 쿼세틴 200 ppm을 포함한 배지에서 3P-1을 발효하였을 때 퀘세틴의 함량은 점점 감소하고 루틴이 일정 시간 증가하였다가 감소하는 경향을 나타내었고, 미지의 물질이 발견되었고, 이 함량은 증가하는 경향을 나타내었다. 이를 분석하기 위하여 HPLC/MS를 사용하여 분자량 분석을 진행하였고, 분석결과 quercetin-3-O-glucoside를 추정되었다.
Author(s)
신지영
Issued Date
2021
Awarded Date
2021. 2
Type
Dissertation
Keyword
Tartary buckwheat Response surface methodology Germination Bioconversion Flavonoids
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2193
http://pknu.dcollection.net/common/orgView/200000374877
Alternative Author(s)
Jiyoung Shin
Affiliation
부경대학교 대학원
Department
대학원 식품공학과
Advisor
양지영
Table Of Contents
Chapter 1. General information 1
1.1. Buckwheat 1
1.2. Flavonoid of tartary buckwheat 5
1.3. Germination 10
1.4. Bioconversion 11
1.5. Objectives of this study 12
1.6. References 13
Chapter 2. Germination of tartary buckwheat at various light strengths to enhance flavonoid content and scale-up of the process 21
2.1. Introduction 22
2.2. Materials and methods 24
2.2.1. Materials 24
2.2.2. Germination of tartary buckwheat 25
2.2.3. Extraction of tartary buckwheat sprout 25
2.2.4. Total flavonoid content 26
2.2.5. Total polyphenol content 26
2.2.6. Flavonoid content analysis using HPLC 27
2.2.7. Antioxidant activity 28
2.2.8. Anti-glycemic activity 31
2.2.9. Assay of human HMG-CoA reductase activity 33
2.2.10. Scale-up of germination using the smart farm system 35
2.2.11. Statical analysis 38
2.3. Results and discussions 38
2.3.1. Morphological characteristics of tartary buckwheat sprouts germinated using different light strength 38
2.3.2. Flavonoid content of tartary buckwheat sprouts grown at the different light strengths 41
2.3.3. Total polyphenol and flavonoid contents of tartary buckwheat sprouts grown at different light strengths 46
2.3.4. Antioxidant activity of tartary buckwheat sprouts grown in different light strengths 50
2.3.5. Anti-hyperglycemic activity of tartary buckwheat sprouts grown in different light strengths 53
2.3.6. HMG-CoA reductase inhibitory activity of tartary buckwheat sprouts grown at different light strengths 57
2.3.7. The yield of tartary buckwheat sprouts grown using the smart farm system 60
2.3.8. Flavonoid content of each germination plate in the smart farm system 64
2.4. Conclusion 64
2.5. References 67
Chapter 3. Optimization of flavonoid extraction conditions from tartary buckwheat sprout using response surface methodology 73
3.1. Introduction 74
3.2. Materials and methods 76
3.2.1. Materials 76
3.2.2. Ethanol extraction of tartary buckwheat sprouts 77
3.2.3. Design of extraction optimization 77
3.2.4. Analysis of flavonoid content using HPLC 78
3.2.5. Verification of model 80
3.2.6. Statistical analysis 80
3.3. Results and discussion 81
3.3.1. Response surface analysis for flavonoid content 81
3.3.2. Influence of extraction conditions on rutin content 83
3.3.3. Influence of extraction conditions on quercetin content 86
3.3.4. Influence of extraction condition on myricetin content 90
3.3.5. Optimized conditions for maximizing rutin, quercetin, and myricetin contents 93
3.3.6. Verification of the optimized condition for flavonoid contents 95
3.4. Conclusion 97
3.5. References 98
Chapter 4. Bioconversion of flavonoid extracted from tartary buckwheat sprouts 102
4.1. Introduction 103
4.2. Materials and methods 104
4.2.1. Materials 104
4.2.2. Reagents and culture media 104
4.2.3. Isolation of bacteria 105
4.2.4. PCR amplification and sequencing 105
4.2.5. Biochemical characteristics of bacteria 107
4.2.6. Bioconversion of flavonoids and extract of tartary buckwheat sprouts 109
4.2.7. Conditions of HPLC/MS analysis 110
4.3. Results and discussions 110
4.3.1. Isolation of bacteria converting flavonoids from querceetin 110
4.3.2. Biochemical analyses of the isolated bacteria 115
4.3.3. Fermentation using isolated bacteria 124
4.3.4. Change of flavonoid contents during fermentation 128
4.3.5. HPLC/MS analysis fermented flavonoid using isolated bacteria 134
4.4. Conclusion 141
4.5. References 142
Summary 146
Degree
Doctor
Appears in Collections:
대학원 > 식품공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.