PUKYONG

Synthesis, Characterization, and Environmental Applications of Organometallic Complexes and Nano-Metal Oxides

Metadata Downloads
Alternative Title
유기 금속 복합체 및 나노 금속 산화물의 합성, 특성 분석 및 활용 연구
Abstract
유해성 시아노 박테리아와 같은 세균이나 , 염료와 같은 환경 오염 물질은 - 신선한 식수 및 위생에 대한 접근을 제한합니다. 산업화, 지구 온난화 및 높은 생활 수준은 환경 오염을 가속하고 인체 건강에 지속적인 위험을 유발합니다. 세균은 어디에나 존재하며 여러 항생제에 대한 내성을 발생시켰으며 이는 최근 제약 산업에 가장 큰 위협 중 하나입니다. 지구 온난화와 부영양화는 수중의 유해성 시아노 박테리아의 성장을 가속합니다. 시아 노 박테리아는 수중에 독소를 생성하고 생명체의 건강을 위협합니다. Microcystis aeruginosa는 신경독 및 간 독소와 같은 시아 노 톡신을 방출하는 담수 조류입니다. 메틸렌 블루 (MB)는 여러 산업 및 연구 기관에서 사용되며 수중으로 방류됩니다. 메틸렌 블루에 오염 된 물은 인간에게 여러 해로운 영향을 미칩니다. 이러한 문제에 대응하려면 효율적이고 쉽고 저렴한 기술이 필요합니다. 유기 금속 복합체 (OC)와 나노 금속 산화물 (NMO)은 이러한 환경 문제를 완화 할 수 있습니다. 이러한 환경 문제에 대처하기 위해서 OC 및 NMO의 오염 통제에 대한 잠재력을 평가하기위한 심층적인 연구가 필요합니다.
따라서 우리 연구의 주요 목적은 시아노 박테리아의 성장 억제와 염료의 분해를위한 유기 금속 복합체와 나노 금속 산화물의 합성 및 분류였습니다. 우리는 6 개의 유기 금속 착물 (dichloro-bis(2-isopropylimidazole)-zinc(II) (Zn1), dichloro-bis(2-methylbenzimidazole)-zinc(II) (Zn2), dichloro-bis(2-methylbenzoxazole)-zinc(II) (Zn3), dichloro-bis(2-methylbenzimidazole)-cobalt(II) (Co1), dichloro-bis(2-methylbenzoxazole)-cobalt(II) (Co2), 그리고 dichloro-bis(2-methylbenzothiazole)-cobalt(II) (Co3) complexes) 및 두 개의 나노 금속 산화물 (molybdenum doped zinc oxide (4) 과 copper-vanadium oxides (5)에 대해 연구했습니다. 복합 Zn1-3 / Co1-3은 실온에서 금속과 리간드를 혼합하여 합성되었습니다. 몰리브덴 도핑 된 산화 아연(4) (MoZnO)은 dry ball mill법을 사용하여 합성 된 반면 구리 도핑 된 산화 바나듐(5)은 마이크로파법을 사용하여 합성되었습니다. 유기 금속 복합체는 UV-visible spectroscopy (UV-VIS), 1H NMR spectroscopy, single X-ray crystallography 및 elemental analysis를 사용하여 분류되었으며, 금속 복합체는 FESEM (field Emission 주사 전자 현미경), Energy-dispersive X-ray spectroscopy ( EDS), X- 선 회절 (XRD) 및 FT-IR 분광법을 이용하여 분류되었습니다. 유기 금속 복합체 (Zn1-3 / Co1-3)는 내성 균주를 포함한 그람 양성 및 그람 음성 박테리아에 대해 적용되었습니다. 나노 금속 산화물 4는 가시 광선 하에서 유해성 시아노 박테리아에 대해 적용되었고 5는 유해성 시아노 박테리아 및 염료에 대해 적용되었습니다. 복합체 Zn1-3 / Co1-3 및 나노 금속 산화물 4 및 5의 작용 메커니즘을 각각 세균, 시아노 박테리아 및 염료에 대해 조사했습니다. Sytox green assay 는Co1-3를 단독으로 사용했을 때 와 암피실리과 같이 사용했을 때의 세균 표면 침투를 연구하기 위해 사용되었습니다. 나노 금속 산화물 4와 5의 산화 분해 메커니즘을 찾기 위해 ·OH, ROS 및 지질 과산화 분석을 수행했습니다.
단결정 X- 선 분석으로 복합 Zn1-3 / Co1-3이 사면체 구조를 가짐을 알 수 있었습니다. 금속 산화물의 XRD 결과는 나노 금속 산화물 4 및 5의 결정 특성을 반영합니다. FESEM으로 얻은 나노 금속 산화물 4 및 5의 평균 직경은 40 nm (4) 및 133 nm (5) 였습니다. 복합체 Zn1-3 / Co1-3은 50-200 µg/ml의 농도 범위 내에서 모든 항생제 민감성 세균에 대해 좋은 항균성을 나타냈습니다. 복합체 Co1-3은 복합체 Zn1-3보다 높은 항균성을 나타냈습니다. Co2 및 Co3 복합체의 항균성은 다른 세균에 비해 최소 억제 농도 (MIC) 값이 12.5 μg / mL로 S. aureus에 대해 더 높았습니다. 암피실린 (AMP)과 복합체 Co1-3의 조합은 Methicillin-Resistant S. aureus 균주 (MRSA)에 대한 Co1-3의 항균성을 증가시킵니다. 흥미롭게도 복합체 Co1-3 단독 및 AMP와의 조합은 다른 항균 작용 메커니즘을 나타 냈습니다. AMP와 결합 된 Co2 및 Co3 복합체는 MRSA 막을 파괴 한 반면 나머지 복합체는 그러한 메커니즘을 나타내지 않았습니다. 나노 금속 산화물 4와 5는 최소 유효 농도 1mg / L로및 4 mg / L M. aeruginosa에 대한 항 조류 활성을 나타 냈습니다. 나노 금속 산화물 4와 5의 항 조류 메커니즘을 조사한 결과 가시 광선 하에서 BG-11 매질에서 수산화 라디칼(·OH)이 생성되는 것으로 나타났습니다. ·OH는 M. aeruginosa 지질막의 과산화를 유발하는 반응성이 높은 산소종으로 세포 내 ROS의 생성을 강화하여 시아노 박테리아의 응집을 유발합니다. 나노 금속 산화물 5는 MB를93.8 % 분해했습니다. 결과적으로 복합체 Zn1-3/ Co1-3과 나노 금속 산화물 4와 5를 이용하여 세균과 시아노박테리아, 염료를 더 효과적으로 제어할 수 있었습니다
Environmental pollutants such as bacteria, blooming harmful cyanobacteria, and dye limited the access to fresh drinking water and sanitation, which necessitates the remediation of these pollutants. Increased industrialization, global warming, and high living standards contribute to environmental pollution and pose continuing risks to human health. Bacteria are omnipresent and developed resistance to several antibiotics, which are one of the serious threats to the accomplishment of recent medications. The bloom of harmful cyanobacteria is intensified in water due to global warming and eutrophication. Cyanobacterial bloom produces toxins in water and endangers aquatic life and human health. Microcystis aeruginosa is the major bloom-causing freshwater blue-green algae, which contaminate the freshwater by releasing cyanotoxins such as neurotoxins and hepatotoxins. Methylene blue (MB) is used in several industries, and research institutes eventually discharge it in the water. MB contaminated water has several harmful effects on humans. To counter these issues, efficient, easy, and cheap techniques are required. Organometallic complexes (OC) and nano-metal oxides (NMO) could offer boundless scope to mitigate these environmental issues. Hence, an intensive investigation is needed to estimate the potential of OC and NMO for pollution control to help in this unprecedented crisis.
Accordingly, the main objective of this work was to synthesize, characterize, and evaluate antibacterial, anti-algal, and dye degradation activity of OC and NMO. We synthesized six organometallic complexes (dichloro-bis(2-isopropylimidazole)-zinc(II) (Zn1), dichloro-bis(2-methylbenzimidazole)-zinc(II) (Zn2), dichloro-bis(2-methylbenzoxazole)-zinc(II) (Zn3), dichloro-bis(2-methylbenzimidazole)-cobalt(II) (Co1), dichloro-bis(2-methylbenzoxazole)-cobalt(II) (Co2), and dichloro-bis(2-methylbenzothiazole)-cobalt(II) (Co3) complexes) and two nano-metal oxides (molybdenum doped zinc oxide (4) and copper-vanadium oxides (5). Complexes Zn1-3/ Co1-3 was synthesized by mixing metal and ligands at room temperature. Molybdenum doped zinc oxide (4) (MoZnO) was synthesized using a dry ball mill method, whereas copper doped vanadium oxide (5) using a microwave method. Organometallic complexes were characterized using UV-visible spectroscopy (UV-VIS), 1H NMR spectroscopy, single X-ray crystallography, and elemental analysis, whereas metal complexes using field emission-scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and FT-IR spectroscopy. Organometallic complexes (Zn1-3/ Co1-3) were applied against Gram-positive and Gram-negative bacteria, including resistant strain. 4 was applied against harmful bloom-forming cyanobacteria and 5 against harmful bloom-forming cyanobacteria and dye, under visible light. The mechanism of action of complexes Zn1-3/ Co1-3 and nano-metal oxides 4 and 5 were investigated against bacteria, cyanobacteria, and dye, respectively. Sytox green assay was used to find bacteria surface penetration behavior of Co1-3 alone and in the combination of ampicillin (AMP). ·OH, ROS, and lipid peroxidation assays were performed to find the oxidative degradation mechanism of nano-metal oxides 4 and 5.
Single crystal X-ray analysis showed that complexes Zn1-3/ Co1-3 had tetrahedral geometry. XRD analysis of metal oxides indicated the crystalline nature of nano-metal oxides 4 and 5. The average diameter of nano-metal oxides 4 and 5 obtained by FESEM was 40 nm (4) and 150 nm (5). Zn1-3/ Co1-3 was exhibited significant antibacterial activity against all antibiotic susceptible bacteria within a concentration range of 50-200 µg/ml. Complexes Co1-3 showed high antibacterial activity than complexes Zn1-3. The complexes Co2 and Co3 were more active against S. aureus with the minimum inhibitory concentration (MIC) value of 12.5 μg/mL. The combination of AMP with complexes Co1-3 increased the antibacterial activity of Co1-3 against Methicillin-Resistant S. aureus strains (MRSA). Interestingly, complexes Co1-3 alone and in combination with AMP exhibited different antibacterial mechanism of action. Complexes Co2 and Co3 in combination with AMP disrupted the MRSA membrane, whereas other complexes did not show such a mechanism of action. Nano-metal oxides 4 and 5 showed anti-algal activity against M. aeruginosa with a minimum effective concentration of 1 mg/L and 4 mg/L, respectively. The investigation of the anti-algal mechanism of nano-metal oxides 4 and 5 showed the generation of hydroxyl free radical (·OH) in the BG-11 medium under visible light. ·OH was a highly reactive oxygen species that caused the peroxidation of M. aeruginosa lipid membrane and triggered the intracellular ROS level. Nano-metal oxide 5 showed 93.8% degradation of MB. Overall, the current study demonstrated that the complexes Zn1-3/ Co1-3 and visible light active nano-metal oxides 4 and 5 could be easily synthesized and employed to control environmental pollutants such as bacteria, cyanobacteria, and dye.
Author(s)
SONDAVID KESHAORAOJI NANDANWAR
Issued Date
2021
Awarded Date
2021. 2
Type
Dissertation
Keyword
Chemsitry
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2222
http://pknu.dcollection.net/common/orgView/200000369167
Alternative Author(s)
손 데이비드 케샤 오라 오지 난 단와 르
Affiliation
Pukyong National University Graduate School
Department
대학원 마린융합디자인공학과
Advisor
Cho Jeong Hyung
Table Of Contents
Chapter 1 General introduction 1
1.1 Organometallic complexes 2
1.1.1 Synthesis and characterization of organometallic complexes 4
1.1.2 Applications of zinc(II) and cobalt(II) organometallic complexes 5
1.2 Nano-metal oxides 8
1.2.1 Methods for synthesis of nano-metal oxides 9
1.2.2 Characterization of nano-metal oxides 10
1.2.3 Applications of NMO 12
1.3 Purpose of this work 13
1.4 References 15
Part I Synthesis of zinc(II)-azole and cobalt(II)-azole complexes for the removal of antibiotic resistant bacteria 29
Chapter 2 Synthesis and characterization of novel chelation-free Zn(II)-azole complexes: Evaluation of antibacterial, antioxidant and DNA binding activity 30
2.1 Abstract 30
2.2 Introduction 31
2.3 Material and methods 34
2.3.1 General method for the synthesis of complexes 34
2.3.2 Antibacterial assay 35
2.3.3 DNA mobility shift assays 35
2.3.4 Antioxidant assay 36
2.4 Results and discussion 37
2.4.1 Synthesis of Zn1-3 37
2.4.2 Molecular structures of Zn(II)-complexes Zn1-3 37
2.4.3 Antibacterial activity 42
2.4.4 Gel-electrophoresis assay 43
2.4.5 Antioxidant assay 45
2.5 Conclusion 47
2.6 References 48
Chapter 3 Cobalt(II) Benzazole Derivative Complexes: Synthesis, Characterization, Antibacterial Activity, Synergistic Activity with Antibiotics and Its Mechanism of Action 55
3.1 Abstract 55
3.2 Introduction 56
3.3 Results and discussion 59
3.3.1 Synthesis 59
3.3.2 Crystal structures 59
3.3.3 Determination of minimal inhibitory concentration 62
3.3.4 Synergistic effect 64
3.3.5 SYTOX green uptake assay 66
3.4 Conclusion 67
3.5 Experimental Section 68
3.5.1 Materials, instrumentation, and physical measurements 68
3.5.2 General method for the synthesis of Co1-3 68
3.5.3 Antibacterial assay 69
3.5.4 Checkerboard dilution test 70
3.5.5 SYTOX green uptake assay 70
3.6 References 72
Part II Algal growth inhibition and dye degradation efficiency of synthetic MoZnO and Cu-VO 80
Chapter 4 Synthesis, Characterization, and Anti-algal Activity of Molybdenum Doped Metal Oxides 81
4.1 Abstract 81
4.2 Introduction 82
4.3 Results 85
4.3.1 Synthesis, morphological and microstructural analysis of MoZnO 85
4.3.2 Structural analysis of MoZnO 87
4.3.3 Anti-algal assay 90
4.3.4 Mechanisms of algae growth inhibition 94
4.4 Discussion 100
4.5. Materials and methods 103
4.5.1 Preparation of MoZnO 103
4.5.2 Characterization 103
4.5.2.1 Morphological and microstructural analysis 103
4.5.2.2 Structural analysis 103
4.5.2.2.1 XRD analysis 103
4.5.2.2.2 FT-IR analysis 105
4.5.3 Algae Growth Inhibition 105
4.5.3.1 Algae culture 105
4.5.3.2 Algae growth inhibition assay 105
4.5.4 Effect of metal salts, metal oxides and their combinations 106
4.5.5 Experiments on algae growth inhibition mechanisms 107
4.5.5.1 ·OH assay 107
4.5.5.2 ROS assay 107
4.5.5.3 Lipid peroxidation assay 108
4.5.5.4 Effect of agglomeration 108
4.5.5.4.1 Optical microscope analysis 108
4.5.5.4.2 SEM analysis 109
4.5.6 Statistical analysis 109
4.6 Conclusions 110
4.7 References 112
Chapter 5 Microwave‐Assisted Synthesis and Characterization of Solar‐ Light‐Active Copper–Vanadium Oxide: Evaluation of Antialgal and Dye Degradation Activity 122
5.1 Abstract 122
5.2 Introduction 123
5.3. Results 126
5.3.1 Synthesis, morphological and microstructural analysis of Cu-VO 126
5.3.2 Structural analysis of Cu-VO 128
5.3.3 Anti-algal assay 131
5.3.4 Dye degradation assay 133
5.3.5 Mechanisms of action 133
5.4 Discussion 136
5.5 Materials and methods 139
5.5.1 Synthesis of Cu-VO 139
5.5.2 Characterization 139
5.5.3 Photocatalytic experiments 140
5.5.3.1 Algae culture 140
5.5.3.2 Algae growth inhibition 140
5.5.3.3 Photocatalytic dye degradation 140
5.5.4 Photocatalysis mechanism 141
5.5.4.1 ·OH assay 141
5.5.4.2 ROS assay 141
5.6. Conclusions 142
5.7 References 143
국문요약 151
Acknowledgement 154
Degree
Doctor
Appears in Collections:
대학원 > 마린융합디자인공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.