PUKYONG

αMoO3 catalyst as counter electrode of all-solid-state fiber dye-sensitized solar cells

Metadata Downloads
Alternative Title
상대 전극 또는 전 고체 섬유 염료 감응 태양 전지로 사용되는 α-MoO3 촉매
Abstract
본 연구에서는 고체 섬유형 염료 감응형 태양 전지를 위한 새로운 마이크로 플라워 판상 구조의 α-MoO3 상대 전극을 개발하였다. 줄 발열 공정에서 tricarbonyltris (propionitrile) molybdenum을 MoO3 졸-겔 전구체로 사용하여 마이크로 구조의 α-MoO3 상대 전극을 제작하였다. 순환전압전류법 및 Tafel 분극 측정 결과, α-MoO3가 포함된 상대 전극이 순수한 Pt보다 더 높은 촉매 활성을 가지는 것을 확인하였다. 따라서, triiodide 이온의 효율적인 환원 반응을 기반으로 새로운 플라워 구조를 가지는 α-MoO3 상대 전극은 높은 전력 변환 효율을 가지는 향상된 단락 전류로 이어질 수 있다. 또한 α-MoO3 상대 전극을 사용한 소자는 더 나은 소자 안정성과 유연성을 가진다. 500 번의 굽힘 주기에서 새로운 MoO3 상대 전극 소자의 전력 변환 효율은 90 % 이상의 특성을 유지하는 반면, 순수한 Pt 소자는 70 %로 감소하였다.
Herein, we report a novel micro-flower lamellar structured α-MoO3 counter electrode for solid-state fiber shaped dye–sensitized solar cells. By using tricarbonyltris (propionitrile) molybdenum as the MoO3 sol-gel precursor during the Joule heating process, a microstructured α-MoO3 counter electrode was fabricated. Cyclic voltammetry and Tafel polarization results indicate that the α-MoO3-incorporated counter electrode has higher catalytic activity than pristine Pt. Therefore, based on the efficient reduction reaction of triiodide ions, the novel flower-structured α-MoO3 counter electrode could lead to an enhanced short-circuit current with high power conversion efficiency (PCE). Furthermore, the device with the α-MoO3 counter electrode provides better device stability and flexibility. Under 500 bending cycles, the PCE of the novel MoO3 counter electrode device maintained more than 90% characteristics, while the bare Pt device reduced to 70%.
Author(s)
UTOMO DRAJAD SATRIO
Issued Date
2021
Awarded Date
2021. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2235
http://pknu.dcollection.net/common/orgView/200000369865
Affiliation
Pukyong National university, Graduate School
Department
대학원 융합디스플레이공학과
Advisor
Yong Hyun Kim
Table Of Contents
Chapter 1: Introduction 1
1.1. Background 1
Figure 1.1 Fiber-shaped technology application 2
Chapter 2: Background 6
2.1. Dye-Sensitized Solar Cells 6
Figure 2.1 Fiber-shaped dye-sensitized solar cells illustration33 6
Figure 2.2 DSSC working principle. 8
2.2. Counter electrode 13
2.3 J-V characteristic 15
Figure 2.3 solar cell equivalent circuit 15
Figure 2.4 I-V curve 17
2.4 Electrochemical impedance spectroscopy 19
Figure 2.5 Nyquist plot 20
Chapter 3: Experimental Method 22
3.1 Preparation of MoO3 micro-flower structure 22
Figure 3.1 Material for S-FDSSCs. 22
3.2 Fabrication of S-FDSSCs 23
Figure 3.2 Device Fabrication process. 23
3.3 Characterization of MoO3 flower-like structure 24
Figure 3.3 Photograph of Solid-State Fiber Dye-Sensitized Solar Cells. 24
3.4 Characterization of S-FDSSCs 25
Chapter 4: Result and Discussion 26
4.1 Material Properties 26
Figure 4.1 a) Fourier transform infrared characteristic of tricarbonyltris (propionitrile) molybdenum before and after annealing treatment. b) X-ray diffraction of tricarbonyltris (propionitrile) molybdenum depends on the annealing temperature. 26
Figure 4.2 Survey scans of the transition of tricarbonyltris (propionitrile).molybdenum to MoO3 in XPS spectra. 28
Figure 4.3 Deconvolution xps peak c–h) Deconvoluted graphs of Mo 3d after annealing, C1s after annealing, O 1s after annealing, Mo 3d before annealing, C 1s before annealing, and O 1s before annealing. 29
Table 4.1 Atomic percentages of oxygen, carbon, and molybdenum in tricarbonyltris (propionitrile) molybdenum (TcPM) before and after annealing. 30
Figure 4.4 Scanning electron microscopy of α-MoO3 with different thicknesses of a) 75 nm, b) 300 nm, and c) 1 µm. 31
Figure 4.5 SEM images of orthorhombic α-MoO3 microstructure fabricated based on the different tricarbonyltris (propionitrile) molybdenum thickness of a) 75 nm, b) 300 nm, and 1 µm. 31
Figure 4.6 a–f) Formation of micro structure depends on the Joule heating time for a) 0 s, b) 15 s, c) 30 s, d) 45 s, e) 1 min, and f) 2 min. 32
4.2 Electrochemical Properties 34
Figure 4.7 Cyclic voltammetry characteristic of Pt and α-MoO3. 34
Figure 4.8 Tafel polarization characteristic of Pt and α-MoO3 a) Optimized device, b) in different thickness. 35
4.3 Device Performance 37
Figure 4.9 SEM image of the fabricated SS-FDSSCs. 37
Figure 4.10 J–V curve of the optimized device in different a) annealing time of α-MoO3 and b) different precursor thickness. 37
Table 4.2 Detailed device key parameters with different Joule heating times. 38
Table 4.3 Detailed device key parameters with different precursor thickness. 39
Figure 4.11 a) Histogram data of PCE with MoO3 structure. d) Electrochemical impedance spectroscopy of pristine and α-MoO3 introduced device. 40
Figure 4.12 Electrochemical impedance spectroscopy of pristine CE and α-MoO3 microstructure-introduced CE with different precursor thicknesses. a) Overall characteristic, and b) CE charge-transfer characteristic region. 41
4.4 Device Stability 42
Figure 4.13 Device lifetime stability. 42
Figure 4.14 Detailed parameter of device characteristic under the stability test. a) Normalized PCE, b) normalized Voc, c) normalized Jsc, and d) normalized FF. 43
Figure 4.15 a) 500 bending fold test, b) bending fold photograph. 44
Figure 4.16 a) washing test efficiency b) washing test photograph. 44
Figure 4.17 a-b) application for lab-made body temperature monitor. 45
Chapter 5: Conclution 46
References 47
Degree
Master
Appears in Collections:
대학원 > 융합디스플레이공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.