그래프 합성곱 LSTM과 HMM을 이용한 사람 행동 영상 분석
- Alternative Title
- Human Activity Video Analysis using Graph Convolutional LSTM and HMM
- Abstract
- We propose a part-based graph convolutional network and long short term memory(PBGCN-LSTM) encoder and hidden Markov model(HMM) model for activity analysis. PBGCN-LSTM is for extracting spatiotemporal features in a human skeleton activity video. HMM analyzes the spatiotemporal features for classifying postures in an activity.
First, PBGCN extracts spatial features in each frame. PBGCN divides human skeleton parts and extracts graph convolution features in a skeleton. The human skeleton can be represented as a graph, in which we view the nodes as the joints and the edges as the bones. And we give prior knowledge to GCN to divide parts. Second, LSTM extracts temporal features using the spatial features of each frame. Third, we obtain the spatiotemporal features represented as a 128 dimensional vector which is represented an activity video from PBGCN-LSTM. Finally, we input these vectors to HMMs. We train HMMs in each activity class.
We experiment PBGCN-LSTM and HMM with NTU-RGB+D60 dataset which provides the human skeleton activity video in 60 activity classes. We measure this model for action recognition tasks and show several visualizations for analyzing the postures in a video.
- Author(s)
- 양우희
- Issued Date
- 2021
- Awarded Date
- 2021. 2
- Type
- Dissertation
- Keyword
- 행동 인식 그래프 합성곱 LSTM HMM
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/2256
http://pknu.dcollection.net/common/orgView/200000374799
- Alternative Author(s)
- Woohee Yang
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 인공지능융합학과
- Advisor
- 신봉기
- Table Of Contents
- 1.서론 1
1.1 연구 배경 1
1.2.연구 내용 및 구성 3
2.관련 연구 4
2.1.골격 영상을 이용한 행동 인식 4
2.2.그래프 합성곱 네트워크 6
3.배경 8
3.1.그래프 합성곱 (Graph Convolution) 8
3.2.골격 구조 (Skeleton Construction) 11
3.3.부위별 그래프 합성곱 네트워크 (Part-based Graph Convolutional Network, PBGCN) 13
3.4.장단기 메모리 (Long Short Term Memory, LSTM) 15
3.5.은닉 마르코프 모델 (Hidden Markov Model, HMM) 20
4.제안 모델 24
4.1.기본 구조 24
4.1.1.입력 데이터 전처리 25
4.1.2.PBGCN-LSTM(Part Based GCN-LSTM) 인코더 27
4.1.3.은닉 마르코프 모델 30
4.2.주요 자세 요약 모델 31
5.실험 결과 32
5.1.데이터셋 32
5.2.성능평가 및 시각화 34
5.2.1.NTU-RGB+D60: GCN-LSTM 인코더 행동 인식 성능 비교 34
5.2.2.NTU-RGB+D60: HMM 자세 분석 클러스터 시각화 37
5.2.3.NTU-RGB+D60: HMM 자세 변환 시각화 38
6. 결론 40
참고 문헌 41
- Degree
- Master
-
Appears in Collections:
- 대학원 > 인공지능융합학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.