PUKYONG

Biofuel productions from macroalgae by co-fermentation and engineered yeasts

Metadata Downloads
Abstract
According to population growth and industrialization, fossil fuels has been depleted and faced environmental problems such as energy shortages due to climate change and global warming. All the things considered, alternative, sustainable, efficient, cost-effective and clean burning energy source were needed for present and future demand. Macroalgae biomass may provide a viable alternative to fossil fuels with various advantages. Especially, waste seaweed cause the significant environmental and economical losses. This waste seaweed can be used as the biomass. Thus, in this study, waste seaweed or red seaweed was used as the biomass for optimization of pretreatment conditions and productions of biofuel. Pretreatment was carried out with (hyper) thermal acid hydrolysis and enzymatic saccharification under various conditions. Adaptive evolution for the increase uptake of specific monosaccharide or yeast engineering by CRISPR/Cas9 were applied in fermentation process enable to enhance the biofuels productivity and reduce the fermentation time. Thus, development of biofuels production processes from macroalgae was carried to require the energy demands.
Ethanol production was performed using waste seaweed obtained from Gwangalli beach, Busan, Korea, after strong winds on January 15, 2015. Eleven types of seaweed were identified and the proportion of red, brown and green seaweed wastes were 26, 46 and 28%, respectively. Optimal pretreatment conditions were determined as 8% slurry content, 286 mM H2SO4 for 90 min at 121℃. Enzymatic saccharification with 16 unit/mL Celluclast 1.5 L and Viscozym L mixture at 45℃ for 48 h was carried out as optimal condition. A maximum monosaccharide concentration of 30.2 g/L was obtained and used to produce ethanol. Fermentation was performed with single or mixed yeasts of non-adapted and adapted Saccharomyces cerevisiae KCTC 1126 and Pichia angophorae KCTC 17574 to galactose and mannitol, respectively. The maximum ethanol concentration and yield of 13.5 g/L and YEtOH of 0.45 were obtained using co-culture of adapted S. cerevisiae and P. angophorae.
Enhancement of galactose uptake for ethanol production from Kappaphycus alvarezii (red seaweed) was developed using CRISPR/Cas9 system. The optimal condition for thermal acid hydrolysis of 10%(w/v) K. alvarezii were 350 mM HNO3 at 121℃ for 60 min, which yielded 34.71 g/L of reducing sugar with negligible inhibitory compounds. Optimal enzyme saccharification was carried out with a 1:1 mixture of Viscozyme L and Celluclast 1.5 L with a maximum monosaccharide concentration of 7.29 g/L. Fermentation was carried out with K. alvarezii hydrolysate using wild-type (WT) S.cerevisiae CEN.PK2-1, overexpression of each GAL1, GAL7, GAL10 and PGM2 by CRISPR/Cas9. Among the various strains, overexpression of GAL1, GAL7 and GAL10 did not show the significant differences of ethanol production. However, PGM2 showed higher galactose uptake rate and produce the highest ethanol concentration. This observation is particular important in the biofuel production, because galactose is one of the abundant monosaccharide in seaweed biomass such as a K. alvarezii, red seaweed.
Acetone-butanol-ethanol (ABE) was produced using waste seaweed from Gwangalli Beach, Busan, Korea. The waste seaweed had a fiber and carbohydrate, content of 48.34%; these are the main resources for ABE production. The optial conditions for obtaining monosaccharides based on hyper thermal acid hydrolysis of waste seaweed were slurry content of 8%, sulfuric acid concentration of 138 mM and treatement time 10 min. Enzymatic saccharification was performed using 16 unit/mL Viscozyme L, which showed the highest affinity (Km= 1.81 g/L). After pretreatment, 34.0 g/L monosaccharides were obtained. ABE fermentation was performed with single and sequential fermentation of Clostridium tyrobutyricum and Clostridium acetobutylicum; this fermentation was controlled pH from 6.0 to 4.5. A maximum ABE concentration of 12.5 g/L with YABE=0.37 was achieved using sequential fermentation. tyrobutyricum and C. acetobutylicum. Efficient ABE production from waste seaweed performed using pH controlled culture broth and sequential cell culture.
인구의 증가와 산업화에 따라 인류는 지난 100년간 화석연료를 사용하였으며, 에너지 고갈과 기후 변화에 따른 기상이변 및 지구온난화와 같은 환경문제에 직면해 있다. 이에 따라 지속 가능한 생물자원인 바이오매스 기반의 바이오연료 생산 연구 및 기술개발이 지속적으로 증가하고 있다. 그 중 3세대 바이오매스인 해조류는 육상계 바이오매스의 한계를 극복할 수 있는 차세대 바이오매스이다. 해조류를 이용한 바이오에너지의 생산은 삼면이 바다인 우리나라에 적합하며, 해조류가 성장하는 동안 이산화탄소를 소모하는 닫힌 탄소순환으로 이산화탄소 배출량 감소 등 생태계의 안정화에 기여한다. 특히 해양 폐기물 해조류는 부패로 인한 악취, 환경오염 및 입출항 선박의 스크루 감김에 의한 고장을 유발한다. 따라서 매년 해수욕장에서는 여름철 관광객유치를 위해 해양 폐기물 해조류를 수거 및 폐기 하는데 막대한 비용을 투자하고 있는 실정이다. 따라서 본 연구에서는 해조류 및 폐해조류를 바이오매스로 이용하여 전처리 조건 최적화와 아세톤-부탄올-에탄올 발효 또는 에탄올 발효를 실시하였다. 다양한 조건에서의 산 촉매 열 가수분해, 초고온 산 촉매 열 가수분해 및 효소 전처리를 통해 당화공정을 최적화 하였다. 발효과정에서 특정 당 순치 또는 CRISPR/Cas9을 이용한 유전자 변형 효모는 당 섭취의 개선을 통해 발효시간 단축 및 고 농도 에탄올 생산을 가능하게 하였다.
폐 해조류를 기질로 이용한 아세톤-부탄올-에탄올 생산최적화를 위해 초고온 열산 가수분해, Michaelis-Menten식을 통한 효소당화 분석 그리고 특정 당에 순치된 Clostridium tyrobutyricum과 Clostridium acetobutylicum의 순차 접종 발효가 pH 조절과 함께 진행되었다. 초고온 열산 가수분해 및 효소당화 후 34.0 g/L 의 단당을 확보하였다. C. tyrobutyricum 과 C. acetobutylicum 순차 접종 발효 결과, 12.5 g/L의 아세톤-부탄올-에탄올을 0.37의 수율로 생산하였다. 따라서 특정 당에 순치된 C. tyrobutyricum 과 C. acetobutylicum을 발효 조건에 맞는 환경에 순차적으로 접종하는 발효방법은 기존의 단일 발효보다 효과적임을 알 수 있다.
폐 해조류를 기질로 이용한 에탄올 생산 최적화를 위해 RSM을 이용한 산 촉매 열 가수분해결과 분석, 효소당화 그리고 특정 당에 순치된 Saccharomyces cerevisiae와 Pichia angophorae를 이용한 단일 및 혼합발효를 진행하였다. 산 촉매 열 가수분해를 통해 30.2 g/L의 단당을 생산할 수 있었다. S. cerevisiae와 P. angophorae를 통한 에탄올 발효 결과 두 가지 균주를 모두 사용한 배지에서 가장 높은 에탄올인 13.5 g/L를 0.45의 수율로 생산하였다. 따라서 특정 당에 순치된 균주의 혼합발효는 단일 균주를 이용한 발효보다 에탄올 발효효율을 높였다.
해조류 중 홍조류인 Kapphaphycus alvarezii를 이용하여 다양한 산을 이용한 산 촉매 열 가수분해, 효소당화 및 CRISPR/Cas9을 통한 재조합 균주를 이용한 에탄올 발효에 대한 연구를 진행하였다. 다양한 산 중에서 질산으로 처리한 경우 높은 단당과 낮은 저해물질 생성으로 가장 효율적인 것을 보였다. 효소당화 후 42 g/L의 단당을 확보하였다. 갈락토오스의 발효 효율을 높이기 위해 Leloir pathway에 관여되는 GAL gene family의 GAL1, GAL7, GAL10 그리고 PGM2를 strong promotor를 CRISPR/Cas9을 이용하여 삽입하였다. 4가지 균주 중 PGM2를 과발현시킨 균주에서 나머지 GAL gene family들의 발현 양을 증가시키며 가장 높은 농도의 에탄올을 생산하는 것을 확인하였다.
Author(s)
선우인영
Issued Date
2019
Awarded Date
2019. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/23078
http://pknu.dcollection.net/common/orgView/200000182078
Alternative Author(s)
In Yung Sunwoo
Affiliation
부경대학교 대학원
Department
대학원 생물공학과
Advisor
김성구
Table Of Contents
CONTENTS

LIST OF TABLES V
LIST OF FIGURES VII
ABSTRACT Ⅹ

GENERAL INTRODUCTION 1
PURPOSE OF THIS STUDY 6
REFERENCES 8

Chapter. I. Bioethanol production using waste seaweed obtained by co-culture of yeasts with adaptive evolution 11
1.1. Introduction 12
1.2. Materials and Methods 14
1.2.1. Material 14
1.2.2. Thermal acid hydrolysis 14
1.2.3. Enzymatic treatment 17
1.2.4. Seed culture and adaptation of yeasts 17
1.2.5. Ethanol fermentation 18
1.2.6. Analytical methods 19
1.2.7. Statistical methods 19
1.3. Results and Discussion 20
1.3.1. Composition of the waste seaweed 20
1.3.2. Thermal acid hydrolysis 20
1.3.3. Enzymatic treatment 24
1.3.4. Effects of adaptive evolution on cell growth 26
1.3.5. Ethanol production by non-adapted S. cerevisiae and P. angophorae 30
1.3.6. Ethanol production by adapted S. cerevisiae and P. angophorae 33
1.3.7. Ethanol production by co-culture of S. cerevisiae and P. angophorae 36
1.4. Conclusion 41
1.5. References 42

Chapter. II. Improvement of galactose uptake rate of Saccharomyces cerevisiae through overexpression of Leloir pathway genes using CRISPR/Cas9 system 46
2.1. Introduction 47
2.2. Materials and Methods 50
2.2.1. Sweed preparation 50
2.2.2. Pretreatment of K. alvarezii for monosaccharide conversion 50
2.2.3. Strains and media 51
2.2.4. Cas9 guided promoter substitution method 53
2.2.5. Ethanol fermentation 55
2.2.6. Real-time quantitative PCR 55
2.2.7. Analytical method 58
2.2.8. Statistical analysis 58
2.3. Results and Discussion 59
2.3.1. Pretreatment of K. alvarezii 59
2.3.2. Enzymatic saccharification of K. alvarezii 64
2.3.3. Fermentation of K. alvarezii hydrolysate using S. cerevisiae CEN.PK 2-1, S. cerevisiae CCW12P-GAL1,CCW12P-GAL7,CCW12P-GAL10 and CCW12P-PGM2 66
2.3.4. Analysis of transcriptional levels of GAL genes during the fermentation with K. alvarezii hydrolysate 69
2.4. Conclusion 72
2.5. References 73

Chapter.III. Acetone-Butanol-Ethanol production from waste seaweed collected from Gwangalli beach, Busan, Korea, by pH-controlled sequential fermentation using Clostridium tyrobutyricum and Clostridium acetobutylicum 78
3.1. Introduction 79
3.2. Materials and Methods 81
3.2.1. Source and composition analysis of waste seaweed from Gwangalli beach 81
3.2.2. Hyper Thermal (HT) acid hydrolysis 81
3.2.3. Enzymatic saccharification 82
3.2.4. Cell cultrue for fermentation 83
3.2.5. Fermentation of waste seaweed hydrolysate 84
3.2.6. Analytical method 85
3.2.7. Statistical analysis 86
3.3. Results and Discussion 87
3.3.1. Composition of waste seaweed from Gwangalli beach 87
3.3.2. HT acid hydrolysis of waste seaweed 89
3.3.3. Enzymatic saccharification 92
3.3.4. Effects of pH controlled fermentation using C. tyrobutyricum 98
3.3.5. Effects of pH controlled fermentation using C. acetobutylicum 101
3.3.6. Effects of pH controlled sequential fermentation with C. tyrobutyricum and C. acetobutylicum 104
3.4. Conclusion 109
3.5. References 110
SUMMARY (in Korean) 115
Acknowledgment 117
Degree
Doctor
Appears in Collections:
대학원 > 생물공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.