PUKYONG

PBD의 신뢰성 향상을 위한 FDS의 연소모델 및 입력조건에 대한 예측성능 검토 연구

Metadata Downloads
Alternative Title
Investigation of the Prediction Performance for Combustion model and Input value of FDS to Improvement Reliability of PBD
Abstract
In this study, the prediction performances of combustion model and input value of Fire Dynamics Simulator (FDS) were evaluated to improvement reliability of Performance Based Design (PBD). Combustion models were investigated about Mixing Controlled Fast Chemistry 1-step (MCFC 1-step), Mixing Controlled Fast Chemistry 2-step (MCFC 2-step), Mixed 3-step, Eddy Dissipation Model 1-step (EDC 1-step) and Eddy Dissipation Model 3-step (EDC 3-step). And input value were investigated about design fire curve and B-RISK.
The prediction performance for combustion models of FDS version 6 were investigated for propane gas fire in a compartment. Comparing numerical results with experimental data, it was found that all of combustion model reasonably predicted for experimental data for Heat Release Rate (HRR) and temperature distribution. Also numerical result well predicted for O2 concentration of experimental data but for differently predicted for CO2 and CO concentrations. For CO2 concentration, combustion models can well predict for experimental data except EDC 3-step. The reaction mechanism of EDC 1-step not consider about CO concentration so EDC 1-step can’t predict CO concentration. And EDC 3-step and MCFC 1-step respectively over-predicted and less-predicted than experimental data for CO concentration. But Mixed 3-step and MCFC 2-step can reasonably predict with experimental data.
The prediction performance of design fire curve was validated for solid fuel fire in a building. Design fire curves used that Two-stage design fire curve (TDF) proposed in this study and Exponential design fire curve (EDF) and Quadratic design fire curve (QDF) suggested by Ingason. In the numerical study, window open slightly at 210 s and then totally open at 270 s because the window was broken by fire expansion during experiment. And MCFC 2-step was used for combustion model. Comparing with numerical results and experimental data, TDF and QDF sufficiently predict the experiment data for temperature distribution than EDF. However, numerical results were difficult to predict experimental data for species concentrations. This is not implies limitation of the MCFC 2-step because in the numerical study was consider about the window opening condition.
The prediction performance of B-RISK was evaluated for fire propagation with experimental data for one- and two-clothing sets. The HRR for one-clothing set and design fire curve was used for input value of B-RISK to calculate for HRR for two-clothing set. Comparing with B-RISK results and experimental data for HRR, percentile of 100% of B-RISK results were over-predict for total HRR but less-predicted for fire growth rate than measured data. And when using experimental data for input value, B-RISK results over-prediction than experimental data for maximum HRR but when using design fire curve for input value, B-RISK results less-predict than experimental data for maximum HRR.
And the prediction performance of FDS using input value for B-RISK results was evaluated. Comparing with FDS results with experimental data, it shows that FDS results less-predict for maximum temperature of experimental data. But comparing with FDS results for each input value, it was found that FDS results when used percentile of 70% of B-RISK results predict similarly with FDS results when used percentile of 100% of B-RISK results. This implies that the B-RISK result for percentile of 70% can sufficiently predicted for fire behaviour of B-RISK results for percentile of 100%.
Author(s)
백빛나
Issued Date
2020
Awarded Date
2020. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/23743
http://pknu.dcollection.net/common/orgView/200000295208
Alternative Author(s)
Bitna Baek
Affiliation
부경대학교 대학원
Department
대학원 안전공학과
Advisor
오창보
Table Of Contents
제 1 장 서 론 1
1.1 연구 배경 1
1.2 기존의 연구 5
1.2.1 FDS 연소모델 5
1.2.2 설계화재곡선 6
1.2.3 B-RISK 6
1.3 연구목적 8
제 2 장 구획실 내 가스화재에 대한 FDS 연소모델 예측성능 검토 10
2.1 수치해석 방법 및 조건 10
2.1.1 FDS 지배방정식 10
2.1.2 계산영역 및 측정위치 13
2.1.3 입력조건 및 연소모델 15
2.1.4 격자 테스트 결과 21
2.2 연소모델에 따른 수치계산 결과 24
2.2.1 열발생률 및 온도 분포에 대한 결과 비교 24
2.2.2 화학종 농도 분포에 대한 결과 비교 27
제 3 장 건물 내 고체화재에 대한 설계화재곡선 예측성능 검토 34
3.1 수치해석 방법 및 조건 34
3.1.1 계산영역 및 측정위치 34
3.1.2 설계화재곡선 36
3.1.3 창문 개방 조건 43
3.1.4 격자 테스트 결과 및 연소모델 47
3.2 설계화재곡선에 따른 수치계산 결과 49
3.2.1 연기 전파에 대한 결과 비교 49
3.2.2 온도 분포에 대한 결과 비교 51
3.2.3 화학종 농도 분포에 대한 결과 비교 55
제 4 장 가연물 간 화재전파에 대한 B-RISK 예측성능 검토 57
4.1 B-RISK 계산조건 57
4.1.1 계산영역 및 입력조건 57
4.1.2 반복계산 횟수에 대한 민감도 테스트 결과 61
4.2 B-RISK 계산 결과 63
4.3 B-RISK 결과를 이용한 FDS 계산조건 67
4.3.1 계산영역 및 측정위치 67
4.3.2 입력조건 및 연소모델 70
4.3.3 격자 및 연소효율 테스트 결과 71
4.4 B-RISK 결과를 이용한 FDS 수치계산 결과 73
4.4.1 온도 분포에 대한 결과 비교 73
4.4.2 화학종 농도 분포에 대한 결과 비교 78
제 5 장 결론 80
5.1 FDS 연소모델에 대한 예측성능 검토 결과 80
5.2 설계화재곡선에 대한 예측성능 검토 결과 81
5.3 화재 전파에 대한 B-RISK 예측성능 검토 결과 82
참고문헌 84
Degree
Master
Appears in Collections:
산업대학원 > 안전공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.