The change of immune responses by Enterococcus faecium in olive flounder (Paralichthys olivaceus) and survival effect of Lactobacillus plantarum encapsulated with poly-γ-glutamic acid
- Alternative Title
- Enterococcus faecium에 의한 넙치의 면역 반응 변화와 폴리감마글루탐산으로 캡슐화된 Lactobacillus plantarum의 생존성 평가에 관한 연구
- Abstract
- The purpose of this study was to investigate the effect of Enterococcus faecium as a probiotic strain on the immune response of fish infected with marine fish pathogen and to evaluate the effect of encapsulation on the viability of probiotic strain, Lactobacillus plantarum.
E. faecium was used as a probiotic strain to investigate the effects on fish immune responses. E. faecium was intraperitoneally injected as a probiotic additive. The immune response was evaluated by lysozyme activity, complement activity, and protease activity at two-day intervals. Expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) by marine pathogen infection were also investigated. The lysozyme and complement activities were increased between 9-15 and 9-13 days, respectively, and antiprotease activity was slightly elevated after 5 days of probiotic treatment. The TNF-α and IL-1β expressions were observed from kidney and spleen. Therefore, E. faecium has been identified as a probiotic that increases the immune response of olive flounder.
And encapsulation was chosen for the purpose of improving environmental resistance for Lactobacillus plantarum as a probiotics for passing through the gastrointestinal track. L. plantarum was encapsulated with 0.1%, 0.25%, or 0.5% 400-kDa poly-γ-glutamic acid (γ-PGA400) produced by Bacillus sp. SJ-10. The viability of the encapsulated cells was assessed under various stress conditions that are common to the processing and ingestion of probiotics, such as freeze-drying, exposure to simulated gastric juice (SGJ), and exposure to bile salt. During freeze-drying to make powder, L. plantarum levels decreased by 1.50 log colony forming units (CFU)/ml without encapsulation. When encapsulated with 0.5% γ-PGA400 under the same conditions, L. plantarum levels decreased by 0.19 log CFU/ml. In the SGJ condition (pH 2), all L. plantarum bacteria died within 1 h without encapsulation but exhibited the highest viability (decrease of 0.30 log CFU/ml) when encapsulated with 0.5% γ-PGA400. All groups had a high survival rate in the bile salt condition (pH 5.9). In the intestinal adhesion test with Caco-2 cells, the highest rate of adherence was 35.9% when the cells were encapsulated with 0.25% γ-PGA400.
The results of this study reveal that probiotic strain, E. faecium, induces immune responsible materials and protect olive flounder from lactococcosis, and γ-PGA400 as an encapsulating material increase the viability of probiotic strain, L. plantarum, under various stress conditions.
본 연구는 병원성 균주에 감염된 어류에 대한 프로바이오틱스의 면역 효과를 확인하고, 프로바이오틱스의 생존력 증가를 위해 바이오폴리머를 이용한 캡슐화를 수행하여 그 효과를 평가하였다.
첫 번째 연구에서는 프로바이오틱스인 Enterococcus faecium (1×109 CFU)을 넙치(olive flounder (Paralichthys olivaceus))에 복강주사 한 후, 양식어류에 많은 피해를 유발하는 Lactococcus garvieae (1×107 CFU)를 인위적으로 감염시킴으로써 병원성 세균이 넙치에 감염되었을 때 프로바이오틱스가 비특이적 면역인자와 사이토카인 발현에 어떤 영향을 미치는지 조사하고, 향후 면역증강 물질로써의 응용 가능성을 확인해보고자 하였다. 병원성 균주를 주사한 24시간 경과 후, 넙치로 부터 15일 동안 각 2일 간격으로 lysozyme, complement, anti-protease 활성 및 전 염증성 사이토카인 유전자의 발현량을 각각 비교하였다. Lysozyme과 complement의 활성은 9-15일, 9-13일 사이에 각각 증가하였고, anti-protease 활성은 프로바이오틱스 주사 5일 후에 증가하였다. 전 염증성 사이토카인 유전자는 프로바이오틱스를 주사하지 않은 대조군에 비해 신장과 비장에서 발현량이 증가하였다.
다음으로 프로바이오틱스의 생존력 향상을 위한 방법으로 프로바이오틱스를 캡슐화 한 후, 이에 대한 생존성 평가를 실시하였다. 프로바이오틱 균주로는 Lactobacillus plantarum을 사용하였으며, 캡슐화 물질로는 바실러스 균주 (Bacillus sp. SJ-10)가 생산하는 폴리감마글루탐산을 세 가지 농도 (0.1, 0.25, 0.5%)로 사용하였다. 생존성 평가는 동결건조, 모의 위액 및 담즙산 처리 후에 감소한 CFU를 환산하였다. 프로바이오틱스를 분말로 만들기 위해 수행되는 동결 건조 과정에서 캡슐화하지 않은 균주는 1.50 log CFU/ml 감소한 반면, 0.5% 폴리감마글루탐산으로 캡슐화한 균주는 0.19 log CFU/ml 감소하였다. 모의 위액에서 캡슐화하지 않은 균주는 1시간 이내 모두 사멸하였다. 하지만 0.5% 폴리감마글루탐산으로 캡슐화한 균주는 0.30 log CFU/ml 감소하여 가장 높은 생존력을 보였다. 담즙산 처리시에는 모든 그룹에서 생존율의 유의적인 변화는 없었다. Caco-2 세포주를 이용한 장 부착율은 0.25% 폴리감마글루탐산으로 캡슐화한 균주가 35.9%로 가장 높았다.
본 연구를 통해 프로바이오틱스는 어류의 면역 반응을 증가시킴으로써 병원성 균주로부터 어류를 보호 할 수 있고, 또한 바이오폴리머를 이용하여 프로바이로틱스를 캡슐화하면 다양한 스트레스 조건으로부터 프로바이오틱스의 환경저항성을 높여 생존력을 증가시킬 수 있다는 것을 확인하였다.
- Author(s)
- 최선영
- Issued Date
- 2020
- Awarded Date
- 2020. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23771
http://pknu.dcollection.net/common/orgView/200000292216
- Alternative Author(s)
- Sun-Young Choi
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 생물공학과
- Advisor
- 공인수
- Table Of Contents
- Chapter 1. Literature review 1
1. Properties of probiotics 2
2. Enterococcus faecium as probiotics 3
3. Lactobacillus plantarum as probiotics 5
4. Nonspecific immune responses 7
5. Probiotic encapsulation 9
6. Purpose of this study 13
References 14
Chapter 2. Effect of a probiotic strain, Enterococcus faecium, on the immune responses of olive flounder (Paralichthys olivaceus) 17
Abstract 18
1. Introduction 19
2. Materials and methods 21
2.1. Experimental fish and sample collection 21
2.2. Lysozyme activity 21
2.3. Complement activity 21
2.4. Antiprotease activity 22
2.5. Cytokine gene expression 23
2.6. Statistical analysis 23
3. Results and discussion 24
3.1. Lysozyme activity 24
3.2. Complement activity 26
3.3. Antiprotease activity 28
3.4. Cytokine gene expression 30
4. Conclusion 32
References 33
Chapter 3. Viability of a probiotic strain, Lactobacillus plantarum, encapsulated with poly-γ-glutamic acid produced by Bacillus sp. SJ-10 during freeze-drying and in an in vitro gastro-intestinal model 36
Abstract 37
1. Introduction 38
2. Material and methods 40
2.1. Production of γ-PGA 40
2.2. Microorganisms 40
2.3. Preparation of γ-PGA-encapsulated cells 40
2.4. Cell viability during the freeze-drying process 41
2.5. Cell survival in simulated gastric juice 41
2.6. Cell survival in the bile salt condition 41
2.7. Adhesion of γ-PGA-encapsulated cells to the Caco-2 cell line 41
2.8. Statistical analysis 42
3. Results and discussion 43
3.1. Analysis of encapsulated L. plantarum using LV-SEM 43
3.2. Cell viability during freeze-drying following γ-PGA-encapsulation 45
3.3. Cell viability in SGJ following γ-PGA-encapsulation 47
3.4. Cell viability under bile salt conditions following γ-PGA-encapsulation 50
3.5. Adhesion of γ-PGA-encapsulated cells to the Caco-2 cell line 52
4. Conclusion 54
References 55
Abstract (in Korean) 60
Acknowledgements 62
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 생물공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.