극단값 분포를 이용한 AFT 변량효과 모델링 접근법
- Alternative Title
- AFT random-effect modeling approaches using extreme value distribution
- Abstract
- Cox's proportional hazards regression model is a semi-parametric method which has often used in the analysis of survival data. However, if the assumption of proportional hazards is not satisfied, the interpretation of the estimates can be difficult. Thus, accelerated failure time (AFT) regression model which usually assumes the distribution of survival time has been used. The AFT model is a linear model that is easier to interpret than the proportional hazards model. In this thesis, we propose a method of estimating AFT random-effect model with the extreme value distribution for analyzing multivariate (or clustered) survival data. For the inference we use a h-likelihood approach and derive the estimation procedure. The proposed method is illustrated with two real data sets, i.e. kidney infection data and multi-center bladder cancer trial data.
keywords: AFT model, Extreme value distribution, H-likelihood, Random effects, Multivariate survival data
- Author(s)
- 현성진
- Issued Date
- 2020
- Awarded Date
- 2020. 2
- Type
- Dissertation
- Keyword
- 가속화 실패시간 모형 극단값분포 다단계 가능도 변량효과 다변량 생존자료
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23812
http://pknu.dcollection.net/common/orgView/200000294750
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 통계학과
- Advisor
- 하일도
- Table Of Contents
- 1. 서론 1
2. 비례위험모형과 AFT 모형의 소개 3
2.1 Cox의 비례위험모형 3
2.2 AFT 모형 4
3. EV 분포를 이용한 AFT 변량효과 모형의 추정 6
3.1 AFT 변량효과 모형 6
3.2 다단계 가능도의 추정절차 9
4. 실제자료 분석 15
4.1 신장 감염 자료 15
4.2 다기관 방광암 임상시험 자료 18
5. 결론 및 토론 21
참고문헌 22
부록 : R 코드 25
- Degree
- Master
-
Appears in Collections:
- 대학원 > 통계학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.