모바일 환경에서의 균열 탐지를 위한 효율적 모델 구성에 관한 연구
- Abstract
- The Pavement Management System(PMS) should be able to support proper maintenance operations for pavement distresses. In the conventional system, however, there are problems such as bottleneck operation that depends on manual processing, worsening road cracks that are left unhandled due to long-term delay of processing, and weak technological foundations for online, real-time processing. To solve this problem, this paper explores the neural network method that enables automated handling of the bottleneck process which has affected negatively on the maintenance operation of PMS. An end-to-end process that incorporates mobile environment is also proposed to cope with the evolving industry trends towards online remote detection. Since there’s no such cases in South Korea where road images collected from special cameras have been used to automate pavement detection, a study to find suitable model for mobile environment(SqueezeNet, MobileNet V3) was conducted using those images in this paper. In addition to this, to be referred by later researches on crack detection to enhance models performance, various optimization function(Adam, RAdam), activation function(ReLU, Mish), and learning rate(0.001, 0.0002) are also tested. As a result, the model trained with the combined settings for best performance is converted into TensorFlow Lite format, and made to run on the mobile environment. A prototype that shows related information for crack detection under mobile environment is also suggested. Lastly, a way to commercialize related technologies in the crack detection industry is surveyed over the result of this paper.
- Author(s)
- 조휘용
- Issued Date
- 2020
- Awarded Date
- 2020. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23848
http://pknu.dcollection.net/common/orgView/200000291013
- Affiliation
- 부경대학교 기술경영전문대학원
- Department
- 기술경영전문대학원 기술경영학과
- Advisor
- 김민수
- Table Of Contents
- Ⅰ. 서 론 1
1. 연구 배경 1
2. 기존 균열 탐지 프로세스의 한계점 5
3. 연구 목표 9
Ⅱ. 관련 연구 11
1. 균열 탐지 문제의 이해와 정의 11
2. 이미지 처리 및 전처리 중심의 균열 탐지 13
3. 신경망 패턴인식 중심의 균열탐지 19
4. 모바일에서의 모델 활용을 위한 효율적 모델 연구 31
Ⅲ. CNN을 활용한 균열 탐지 실험 38
1. 도로 균열 데이터 생성 및 구성 38
2. 모바일 환경내의 구동을 위한 모델 탐색 44
3. 최적화 및 활성화 함수에서의 성능 비교를 위한 탐색 51
Ⅵ. 실험 및 결과 분석 59
1. 실험 환경 59
2. 실험 결과 및 분석 59
3. 모바일에서의 균열 탐지 63
Ⅴ. 결 론 67
1. 사업화 방안 67
2. 결과 토의 및 연구의 한계점 69
3. 향후 연구 방향 제시 70
참고 문헌 72
1. 국내 문헌 72
2. 해외 문헌 72
감사의 글 83
- Degree
- Master
-
Appears in Collections:
- 기술경영전문대학원 > 기술경영학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.