엣지 컴퓨팅 환경에서 객체탐지 기법을 활용한 도로 균열 탐지 시스템 개발
- Alternative Title
- A Development of Road Crack Detection System Using Object-Detection Methodology for Edge Computing Environment
- Abstract
- In large cities with heavy traffic and many roads to manage, it takes months to even years to detect road cracks and repair them. One of main reasons for this prolonged maintenance job can be attributed to manual and batch processing of road crack detection.
Manual and visual inspections are repeated from the initial crack detection task to the onsite re-diagnosis which cause significant delay in the maintenance process.
Currently, some local governments are attempting to automate and accelerate those manual road crack detection and maintenance systems using artificial intelligence technologies and edge computing devices.
In the field environment where the network connection is unstable, road crack diagnosis should be done without relying on the central server.
During this process, the difference between the road scanner image and onsite acquired image should be properly handled by the edge device.
In addition to this, the computational capacity required for training and operating artificial neural networks for crack detection needs to be properly distributed among the cloud server and edge devices.
In this paper, to handle those problems of road management system, a method for developing mobile Internet environment over edge device that detects road cracks and supports repair works is studied.
- Author(s)
- 하종우
- Issued Date
- 2020
- Awarded Date
- 2020. 2
- Type
- Dissertation
- Keyword
- 엣지컴퓨팅 균열탐지 객체탐지
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23909
http://pknu.dcollection.net/common/orgView/200000293341
- Alternative Author(s)
- Jong Woo Ha
- Affiliation
- 부경대학교 기술경영전문대학원
- Department
- 기술경영전문대학원 기술경영학과
- Advisor
- 김민수
- Table Of Contents
- Ⅰ. 서 론 1
1. 연구의 배경과 목적 1
2. 연구의 방법과 구성 7
Ⅱ. 이론적 배경 및 선행연구 9
1. 클라우드 컴퓨팅 환경과 엣지 컴퓨팅 환경 9
2. 딥러닝과 객체탐지 12
3. 도로 균열 탐지 32
Ⅲ. 파일럿 시스템의 균열 탐지 설계 40
1. 제안된 DNN(Deep Neural Network)의 구조 40
2. DNN의 학습 및 테스트 결과 41
Ⅵ. 도로 균열 탐지를 위한 모바일 시스템 54
1. 파일럿 시스템 구조 54
2. 구축 환경 및 기능 구현 55
3. 테스트 운용 결과 및 활용 방안 57
Ⅴ. 결론 60
1. 연구 요약 60
2. 연구의 한계점과 향후 연구 방향 61
참고 문헌 63
1. 국내 문헌 63
2. 해외 문헌 63
감사의 글 70
- Degree
- Master
-
Appears in Collections:
- 기술경영전문대학원 > 기술경영학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.