PUKYONG

21Cr 린 듀플렉스 스테인리스강의 기계적 특성 및 내식성에 관한 연구

Metadata Downloads
Abstract
The effects of Mo addition and an aging heat treatment on microstructural evolution and transformation-induced plasticity (TRIP) and localized corrosion behavior in cold-rolled lean duplex stainless steel (DSS) samples were investigated. 21Cr lean DSS with 0–2% Mo was cold-rolled into 1-mm-thick plates and solution-treated at 1050 ℃ for 5 min.
During the subsequent aging treatment at 700 ℃, redistribution of alloying elements, such as chromium (Cr), nickel (Ni) and Nitrogen (N), occurred in the α and γ phases, which resulted in local segregation and secondary phase precipitate in the α-phase interior and/or the α/γ phase boundary; this precipitate was confirmed as Cr2N. With increasing Mo content, a smaller thermal α΄ phase were formed after solutionization.
Decrease in the stability of the γ phase, allowing deformation-induced martensite transformation (DIMT) to occur more easily. Due to the instability of the γ phase, the fraction of the thermal α΄ phase increased with aging. steels with a higher Mo content exhibited a more stable γ phase, which suppressed the formation of deformation-induced martensite (DIM). The effect of DIM (caused by TRIP) on the strength and elongation of the steels according to the fraction of the thermal α΄ phase was evaluated.
The pitting potential (Epit) and critical pitting temperature (CPT) values decreased drastically, even after 5 min of aging time, compared with the as-solutionized steel; the values decreased with aging time.
Pitting corrosion resistance decreases rapidly with increasing aging time and increases with the addition of Mo. The results of CPT test and potentiodynamic test with the samples for various aging time showed the consistency.
Intermetallic precipitates of Cr2N containing high chromium content formed at the α/γ phase boundaries after aging treatment caused to the localized depletion of Cr in their vicinity. the longer aging time, the more Cr2N precipitates formed at α/γ phase boundary rather than ferrite matrix which should result to the easier pit initiation at the α/γ phase boundary.
Author(s)
윤병준
Issued Date
2022
Awarded Date
2022. 2
Type
Dissertation
Keyword
Duplex Stainless steel TRIP Mo alloying addition Aging effect Pitting corrosion
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/24068
http://pknu.dcollection.net/common/orgView/200000604337
Affiliation
부경대학교 대학원
Department
대학원 재료공학과
Advisor
안용식
Table Of Contents
Ⅰ.서론 1
Ⅱ.이론적 배경 3
1.스테인리스강 3
가.스테인리스강의 정의 3
나.스테인리스강의 passivation layer 5
다.스테인리스강의 분류 7
2.듀플렉스 스테인리스강 15
가.듀플렉스 스테인리스강의 개발 역사 15
나.PREN(pitting resistance equivalent number) 17
3.Precipitation of secondary phases 22
가.Sigma(σ) phase 22
나.Chromium nitride 23
다.Carbide 23
4.Effects of alloying elements 28
가.Chromium 28
나.Molybdenum 28
다.Nickel 29
라.Nitrogen 29
마.Manganese 34
바.Copper 34
사.Tungsten 35
Ⅲ.실험 방법 36
1.미세조직관찰 및 인장시험 36
2.공식 부식시험 38
Ⅳ.시효 열처리가 린 듀플렉스 스테인리스강의 미세조직과 기계적 특성에 미치는 영향 40
1.시효 열처리 시간에 따른 미세조직 변화 40
2.마르텐사이트 변태 거동 50
3.시효 열처리 시간에 따른 기계적 특성 변화 55
4.결과 및 고찰 63
Ⅴ.시효 열처리가 린 듀플렉스 스테인리스강의 국부 부식 저항성에 미치는 영향 64
1.미세조직 변화 64
2.공식 부식 거동 68
3.공식 및 2차상 분석 고찰 75
4.결과 및 고찰 81
Ⅵ.참고문헌 82
abstract 89
Degree
Doctor
Appears in Collections:
대학원 > 재료공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.