Molecular Design and Synthesis of Unprecedented Organic Photosensitizers and its Application
- Alternative Title
- 유기 감광제의 설계와 합성 및 그 응용
- Abstract
- 감광제(photosensitizer)는 특정 파장대의 빛을 흡수하여 들뜬 상태가 되었다가 다시 안정화되는 과정에서 열과 활성산소종(Reactive Oxygen Species, ROS)을 발생시킬 수 있다. 이러한 특성을 이용하는 치료법에는 광열치료법과 광역동치료법이 있다. 분자내 회전 같은 비복사전이의 과정으로 발생한 열을 이용하여 암세포를 사멸시키는 방법을 광열치료법(Photothermal Therapy, PTT)라 하며 반응성이 큰 활성산소종을 이용하는 경우를 광역동치료법(Photodynamic Therapy, PDT)라고 한다. 또한, 광역동치료법은 Type-Ⅰ과 Type-Ⅱ의 두가지 종류가 있다. 들뜬 상태의 감광제가 지질, 단백질, 핵산 등과 같은 생체물질과 반응하여 라디칼을 생성하고 이 라디칼이 산소와 반응하여 ROS를 생성하는 경우를 Type-Ⅰ PDT, 산소와 직접적으로 반응하여 단일항 산소(singlet oxygen)을 생성하는 경우를 Type-Ⅱ PDT라 한다.
1장에서는 산소가 부족한 암세포에서 PDT효율이 감소하는 단점을 해결하기 위한 감광제 AK6S를 설계하고 합성하였다. 이를 위해 Type-Ⅰ과 Type-Ⅱ의 PDT가 가능하다고 알려진 나프탈이미드(naphthalimide)의 카보닐기의 산소를 황으로 치환한 싸이오나프탈이미드(thionaphthalimide) 구조와 단일항 산소를 저장할 수 있는 2-pyridone을 결합하였다. 감광제에 의해 발생한 단일항 산소 중 일부는 2-pyridone 구조와 반응하여 endoperoxide의 형태로 저장 가능하다. 이후 저장된 단일항 산소는 thermalcycloreversion에 의해 endoperoxide가 원래의 형태로 돌아오며 서서히 단일항 산소를 방출함으로써 지속적인 PDT가 가능하게 해준다. AK6S는 Type-Ⅰ과 Type-Ⅱ의 PDT가 모두 가능하였으며 1H NMR 테스트를 통하여 endoperoxide의 형성을 확인하였다.
2장에서는 분자 내에 전자 받개와 전자 주개가 모두 존재하는 D-A 구조를 가진 NI2를 합성하고 광열치료법에 활용하였다. 빛에너지를 흡수하여 들뜬 상태의 감광제는 안정될 때 복사 이완(radiative decay), 비복사 이완(non-radiative decay)의 경로로 에너지 방출이 가능하다. NI2는 전자 주개에 분자내 회전이 가능한 회전자의 도입으로 유도된 TICT(twisted intramolecular charge transfer)를 통해서 복사 이완을 통한 에너지의 방출이 억제되고 에너지 방출의 주요 경로가 비복사이완을 통한 열방출로 이루어진다. 재침전(reprecipitation)법을 이용하여 만든 NI2의 나노 입자의 광열 변환 효율(photothermal conversion efficiency)은 92.5%로 높은 효율을 나타냈으며 종양 쥐 모델에서 691 nm 파장의 레이저를 이용한 PTT에서 뚜렷한 암세포 사멸 능력을 보였다.
3장에서는 pyrazino[2,3-b]phenazine을 기반으로 한 여러 감광제를 설계하고 합성하였다. Phenazine 코어에 hetero atom인 질소의 도입, 컨쥬게이션의 확장, 여러 작용기의 도입을 한 DS의 특성을 확인하였다. 합성한 DS 구조들의 특성 중 특히 PDT 효율과 관련 있는 singlet oxygen quantum yield는 conjugation의 확장보다는 phenazine 코어 부분에 hetero atom인 질소가 늘어날수록 증가하는 경향을 보였다. 또한, DS 구조들 중 일부는 높은 two-photon absorption cross-section 값을 가지고 있어 two-photon excited photodynamic therapy에 활용 가능성을 가지고 있다.
A photosensitizer absorbs light of a specific wavelength to become excited state and then generate heat and Reactive Oxygen Species (ROS) in the process of stabilizing. Photothermal therapy (PTT) is a method of treating cancer cells using the heat generated in the process of non-radiative decay such as intramolecular rotation, and the case of using reactive oxygen species is called Photodynamic therapy (PDT). In addition, when the photosensitizer in an excited state reacts with biomolecules such as lipids, proteins, nucleic acids, etc. to generate radicals and this radical reacts with oxygen to generate ROS is called Type-I PDT. Type-II PDT is a case in which the photosensitizer in an excited state reacts with oxygen directly to produce singlet oxygen.
In chapter Ⅰ, a novel photosensitizer AK6S was designed and synthesized to solve the disadvantage of decreased PDT efficiency in oxygen-deficient cancer cells. For this purpose, we combined a thionaphthalimide derivative with 2-pyridone moiety. Type-I and Type-II PDT are known to be possible when the oxygen of the carbonyl group is substituted with sulfur in naphthalimide, and the 2-pyridone moiety is known to be capable of storing singlet oxygen. Some of the singlet oxygen generated by the photosensitizer reacts with 2-pyridone moiety and is stored in the form of endoperoxide. After that, it slowly releases singlet oxygen and returns to its original form by thermalcycloreversion, enabling continuous PDT. AK6S was capable of both Type-I and Type-II PDT, and the formation of endoperoxide was confirmed by the 1H NMR test.
In chapter Ⅱ, NI2 with a D-A structure was synthesized in which both an electron acceptor and an electron donor exist in a molecule that can be used for photothermal therapy. When a photosensitizer in an excited state by absorbing light energy is stabilized, energy can be released through a path of radiative decay and non-radiative decay. In NI2, the release of energy through radiative relaxation is suppressed through twisted intramolecular charge transfer (TICT) induced by the introduction of a rotor capable of intramolecular rotation into the electron donor, and the main pathway of energy release is heat through non-radiative decay. The NI2 nanoparticles made using the reprecipitation method showed high photothermal conversion efficiency of 92.5%, and the remarkable ability to kill cancer cells in PTT using a 691 nm laser in a tumor mouse model was demonstrated.
In Chapter Ⅲ, several photosensitizers based on pyrazino[2,3-b]phenazine were designed and synthesized. The characteristics of DS structures, which introduced hetero atom nitrogen, extension of conjugation, and introduction of several functional groups, into the phenazine core were confirmed. Among the characteristics of DS structures, the singlet oxygen quantum yield, particularly related to the PDT efficiency, showed a tendency to increase as nitrogen, a hetero atom, was introduced into the phenazine core, rather than the extension of conjugation. In addition, some of DS compounds have high two-photon absorption cross-section values, so they have the potential to be used for two-photon excited photodynamic therapy.
- Author(s)
- 최영환
- Issued Date
- 2022
- Awarded Date
- 2022. 2
- Type
- Dissertation
- Keyword
- photosensitizer photodynamic therapy photothermal therapy
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/24141
http://pknu.dcollection.net/common/orgView/200000604302
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 4차산업융합바이오닉스공학과
- Advisor
- 이송이
- Table Of Contents
- I. A Heavy-Atom-Free Photosensitizer Based on Thionaphthalimide for Sustainable Photodynamic Therapy 1
I-1. INTRODUCTION 2
I-2. RESULTS AND DISCUSSION 4
2.1. Synthetic Process 4
2.2. Photophysical Properties 5
2.3. Photo Dynamic Therapy Effect in vitro 6
2.4. 1H NMR Test for Endoperoxide Formation 8
2.5. Computational Calculation of AK compounds 11
I-3. CONCLUSION 12
I-4. EXPERIMENTAL SECTION 12
I-5. REFERENCES 19
I-6. APPENDIX 22
II. Design and Synthesis of High Efficiency Photothermal Agent for Photothermal therapy 31
II-1. INTRODUCTION 32
II-2. RESULTS AND DISCUSSION 34
2.1. Synthetic Process 34
2.2. Photophysical and Photothermal Properties 35
2.3. Computational Calculation of NI compounds 38
2.4. Properties of NI NPs 41
2.5. Preparation of NI NPs 42
2.6. Photothermal Behaviors of NI2 NPs 42
2.7. Photothermal Treatment in vitro 44
2.8. Photothermal Treatment in vivo 45
II-3. CONCLUSION 47
II-4. EXPERIMENTAL SECTION 47
II-5. REFERENCES 54
II-6. APPENDIX 57
III. Design and Synthesis of Novel Photosensitizers based on pyrazino[2,3-b]phenazine 66
III-1. INTRODUCTION 67
III-2. RESULTS AND DISCUSSION 69
2.1. Synthetic Process 69
2.2. Photophysical Properties 69
2.3. Photophysical Measurement 71
2.4. Singlet Oxygen Quantum Yield Measurement 72
2.5. Computational Calculations of DS Compounds 73
III-3. CONCLUSION 77
III-4. EXPERIMENTAL SECTION 77
III-5. REFERENCES 81
III-5. APPENDIX 84
- Degree
- Master
-
Appears in Collections:
- 대학원 > 4차산업융합바이오닉스공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.