PUKYONG

Research on the 3D printing technology for the development of senior-friendly food using abalone (Haliotis discus hannai) powder

Metadata Downloads
Abstract
본 연구는 전복을 이용하여 식품3D 프린팅 잉크재료(감자전분, 젤라틴)의 농도에 따른 영향과 인쇄가능성을 평가하고자 하였으며, 잉크의 경도를 측정하여 고령친화식품 기준에 적합함을 보여주었다. 실험 결과, 전복 페이스트에 함유된 감자 전분의 농도를 0에서 7%로 증가시킴에 따라 경도는 유의적으로 증가하였고, 저장 탄성 계수(storage modulus)와 손실 탄성 계수(loss modulus) 또한 전분 농도에 의존한 상승을 보였으며 각 전분 농도에서 저장 탄성 계수는 손실 탄성 계수 보다 높은 값을 보여 재료의 특성이 겔에 가까움을 확인하였다. 3D 인쇄가능성은 3% 전분 농도 이상에서 구조의 무너짐이 없이 증착되어 본래 형상의 복원력이 높았고, 3% 전분은 고령친화식품 3단계(혀로섭취)로 가장 낮은 물성을 가지지만, 안정적인 구조를 형성한 농도였다. 최적 전분 농도인 3%로 25×25×16 mm3크기의 구조를 20-80%의 4가지 내부 채움 밀도로 출력 후, 젤라틴으로 채워 고령친화식품 기준에 따라 경도를 측정하였다. 내부 채움 밀도가 증가함에 따라 전복 함유 잉크의 비율이 높아지고 젤라틴의 비율은 낮아져, 20%에서 1단계(치아 섭취)였던 물성은 40, 60, 80% 에서는 2단계(잇몸섭취)로 경도가 감소하였다.
두번째 연구에서는 고령친화식품의 영양성분 기준을 충족하기 위해 전복(10%) 파우더에 대두분리 단백(4.5%), 폴리덱스트로스(2.5%), 비타민C(0.0098%), 젤라틴(0-7%)을 첨가하여 단백질, 식이섬유, 비타민C 기준을 충족한 식용3D 프린트 잉크를 제조하였다. 젤라틴으로 3D 프린트 잉크의 물성 조절이 가능함을 확인하고자 하였고 열안정성 향상을 위해 젤란검(1%)을 첨가하였다. 젤라틴 농도에 따른 경도측정은 젤라틴 농도에 따라 유의적으로 증가하였고, 3% 젤라틴 농도 이상에서는 젤라틴의 높은 수분 보유 능력으로 물과 재료의 층분리가 일어나지 않아 선의 끊김과 휘어짐 없이 출력되어 출력 후 안정적인 구조를 유지하였다. 3% 젤라틴 함유 잉크 출력물의 지름과 높이 측정 결과가 출력하고자 한 원기둥(지름 28 mm, 높이 40 mm)의 크기와 유의적인 차이가 없음을 확인하였다.
결과적으로, 전복을 함유한 3D 프린트 잉크는 전분과 젤라틴의 농도에 따라 경도, 점탄성, 미세구조가 조절되며 이는 인쇄성에 영향을 미친다. 전분과 젤라틴의 농도 증가로 인해 높은 경도와 점탄성을 가진 잉크는 균일한 기공을 가진 미세구조를 나타내었으며 인쇄성이 향상되어 구조적인 안정성을 가진다. 본 연구에서는 3D 프린트의 내부 채움 밀도 조절과 젤라틴 용액을 채우는 방식으로 새로운 물성조절 기술을 제시하였으며 이는 전복과 같은 단단한 재료를 3D 프린팅으로 고령친화식품 가공산업에 적용 가능하게 한다.
This study aimed to evaluate the effect of 3D printed ink components, including potato starch, gelatin, and density of scaffold structure, for the printability of abalone-contained senior-friendly food with levels l to 3. An increase in the concentration of potato starch (0 to 7%) significantly increased the hardness, storage modulus (G’), and loss modulus (G’’). The storage modulus showed higher values than the loss modulus, demonstrating that the 3D printed ink has gel characteristics. The printability was confirmed at 3% of starch concentration without collapse of the structure, and the 3% starch had the lowest physical properties in three levels of senior-friendly food but formed a stable structure. The scaffolds with a size of 25x25x16 mm3 at an optimal starch concentration of 3% were printed to four internal filling densities (20, 40, 60, and 80%) and then filled with gelatin to measure the hardness. Since the internal filling density increased, the ratio of abalone paste increased, and the ratio of gelatin decreased. Therefore, the hardness decreased from the first level (20%) to the second level (40, 60, 80%).
In the second chapter, isolated soy protein (4.5%), polydextrose (2.5%), vitamin C (0.0098%), gelatin (0-7%), and dw were mixed with abalone powder (10%) to prepare edible 3D food ink that meets nutrition and hardness of senior-friendly food. 3D printing ink was confirmed that adjusting texture properties with gelatin and gellan gum (1%) was added for thermal stability. Hardness was significantly increased according to gelatin concentration. At greater than 3% gelatin concentration, layer separation of water and materials did not occur, and structures were printed without interruption and bending due to gelatin’s high water holding capacity (WHC). The structure measurement of diameter and height was showed that containing 3% gelatin was not significantly different from the size of the original model (diameter of 28 mm, height of 40 mm).
Therefore, the 3D printing ink containing abalone affects hardness, viscoelasticity, and microstructure depending on the concentration of starch and gelatin, connecting printability. Due to increased materials, 3D food inks with high hardness and viscoelasticity exhibit microstructures with uniform pores and have structural stability.
In this study, a novel texture properties control technology was proposed by controlling the internal filling density of 3D printing and filling gelatin solutions, making hard materials such as abalone applicable to the senior-friendly food processing industry through 3D printing.
Author(s)
윤현정
Issued Date
2022
Awarded Date
2022. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/24167
http://pknu.dcollection.net/common/orgView/200000605116
Alternative Author(s)
Hyun Jung Yun
Affiliation
부경대학교 대학원
Department
대학원 식품생명과학과
Advisor
이상길
Table Of Contents
Chapter 1. Texture control of gelatin embedded elderly food through scaffold modification using 3D printing 1

1.1 Introduction 3
1.1.1. Necessity of elderly food 3
1.1.2. 3D printing technology applied to food processing 4
1.1.3. Characteristics of ingredients 5
1.1.4. Purpose of study 7
1.2. Materials and methods 8
1.2.1. Materials 8
1.2.2. Preparation of abalone powder 8
1.2.3. Preparation of the abalone paste and gelatin solution 9
1.2.4. Rheological behaviors of abalone pastes 11
1.2.5. Scanning electron microscopy (SEM) 11
1.2.6. 3D printing 12
1.2.7. Gelatin embedded scaffold processing 14
1.2.8. Texture analysis 16
1.2.9. Statistical analysis 16
1.3. Results and discussions 18
1.3.1. Rheological properties of abalone pastes 18
1.3.2. Microstructure of abalone pastes 22
1.3.3. 3D printing performance 24
1.3.4. 3D printing of scaffolds and gelatin embedding 27
1.3.5. Texture analysis 29
1.4. Conclusions 33
1.5. References 34

Chapter 2. Development 3D print ink of foods for seniors controlling physical properties according to gelatin concentration 39
2.1 Introduction 40
2.2. Materials and methods 43
2.2.1. Materials 43
2.2.2. Sample preparation 43
2.2.2.1. Abalone powder 43
2.2.2.2. Preparation of the 3D print ink with abalone (Abalone 3D print ink: API) 44
2.2.3. Texture analysis 46
2.2.4. Water holding capacity (WHC) 46
2.2.5. Rheological properties of API 47
2.2.6. 3D printing process 48
2.2.7. Scanning electron microscopy (SEM) 49
2.2.8. Statistical analysis 49
2.3. Results and discussions 50
2.3.1. Texture analysis 50
2.3.2. Water holding capacity (WHC) 53
2.3.3. Rheological properties of API 55
2.3.4. 3D printing process 58
2.3.5. Scanning electron microscopy (SEM) 60
2.4. Conclusions 62
2.5. References 63

Chapter 3. Effects of various extraction factors on protein yield of Haliotis discus hannai (Abalone) 68
3.1 Introduction 69
3.2. Materials and methods 72
3.2.1. Materials 72
3.2.2. Protein extraction from abalone 72
3.2.3. Examination of the efficiency of various protein extracting factors 73
3.2.3.1. Buffer selection 73
3.2.3.2. The efficiency of sodium chloride (NaCl) for protein extraction 73
3.2.3.3. The efficiency of surfactants for protein extraction 74
3.2.4. Application of optimal extracting condition to heat-treated abalone 74
3.2.5. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 75
3.2.6. Statistical analysis 75
3.3. Results and discussions 76
3.3.1. Protein assay and buffer effects 76
3.3.2. Sodium chloride effects 79
3.3.3. Surfactant effects and synergistic effects 81
3.3.4. Application of optimal extracting condition to heat-treated abalone 84
3.3.5. SDS-PAGE 86
3.4. Conclusions 88
3.5. References 89
Degree
Master
Appears in Collections:
대학원 > 식품생명과학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.