PUKYONG

Research on User Behaviour of Robo-advisor in Chinese Commercial Banks

Metadata Downloads
Alternative Title
중국 상업은행의 로보어드바이저 사용자 행동 연구
Abstract
2013년 이래 금융 과학 기술의 발전이 신속하면서 동시에 스마트 투자 업무의 빠른 발전을 이끌었다.전통적인 투자고문은 투자고문의 전문적 소양과 종사경험을 바탕으로 투자자의 자산상태, 위험선호, 기대수익 등을 결합해 투자자에게 전문적인 투자 조언을 제공한다.스마트투자는 AI 등 기술을 투자자문 분야에 도입하고, 스마트 알고리즘과 포트폴리오 투자 후 자동화 관리 기술을 적용해 사용자의 주·수동 투자 전략을 결합한 맞춤형 투자의 효율성을 높여 투자의 스마트 업그레이드를 추진할 수 있다.스마트 투자의 출현 및 빠른 발전은 중국 상업은행의 대면적인 재테크 업무 패턴에 비교적 큰 충격과 도전을 야기하는 동시에 상업은행 발전의 좋은 기회이기도 하다.
비교분석법, 사례분석법 등 연구기법을 적용해 중국 공상은행 'AI투자'의 사례를 들어 'AI투자' 제품의 시장 데이터를 활용해 분석했다.이 연구에서는 UTAUT 모델을 혁신적으로 적용한 스마트 투신 제품의 사용자 행동 분석에 스마트 투신 제품의 특성을 결합해 새로운 사용자 행동 평가 지표를 제시했다.전통적인 재테크 상품에 비해 지능투자에 대한 인식이 적고, 정보 비대칭이 강하게 느껴지며, 정보 비대칭과 불확실성이 더해져 위험을 감지하게 된다는 점에서 이 연구는 위험변수를 감지하는 데 추가되었다.현재 국내 은행 및 인터넷 금융 플랫폼에서 스마트벤처 상품을 출시하고 있으며, 이용자가 다양한 선택에 직면하고 있으며, 브랜드 인지도와 플랫폼 품질도 사용자의 사용행위에 영향을 줄 수 있기 때문에, 본 연구는 브랜드 인식도와 플랫폼 품질 두 가지 변수를 추가했다.공상은행의 지능형 투자상품 이용자의 구매행위의 영향요인을 분석하여 성과기대, 노력기대, 사회적 영향, 편의조건, 위험감지, 브랜드인식도 등을 자기변수로 삼고, 사용의사를 중간변수로 사용행위가 인가변수로 한다.실증모델 수요설계를 통한 설문조사를 실시하고 실시 후 관련 데이터를 수집하여 실증분석하여 실증결과에 따라 다음과 같이 알 수 있다.
이용의사가 이용자의 이용행위에 가장 큰 영향을 미치는 경로계수가 0.73(p<0.001)에 달해 이용자의 이용의사가 이용행위에 직접적인 영향을 미치는 것으로 나타났다.각 영향요인에 따른 경로계수는 성과기대, 브랜드인식도, 노력기대, 편의조건, 플랫폼 품질 순으로 위험부담을 감지하여 사용의사에 영향을 준다.그중에서도 실적 기대의 영향이 가장 크며, 스마트 투자의 경우 수익면에서 잘 할수록 비용이 적게 들고, 고객의 실적 기대감이 클수록 고객이 체감하는 실제 가치가 커져 사용자의 사용 의사에 플러스 요인으로 작용한다.
스마트투자의 행동평가 모델을 구축하는 한편 이를 실천분석하고 실증분석 결과를 결합해 산업은행 'AI' 투자의 업무발전에 대한 개선 의견을 제시하는 데 기여했다.금융기관은 상품 수익 증대, 상품 인지도 향상, 이용자 조작 프로세스 간소화, 이용자 감지 위험 저감 등의 측면에서 지능형 투자의 최적화 방안을 추진할 수 있으며, 이러한 결론과 조언은 스마트 투자의 발전을 촉진하는 데 의의가 있다.
키워드: 로보어드바이저, 기업 'AI' 투자, UTAUT 모델
Since 2013, the rapid development of financial technology has also led to the rapid development of robo-advisor business. Traditional investment advisors are based on the professional qualities and experience of investment advisors, combined with investors' asset status, risk appetite, expected returns, etc., to provide investors with professional investment advice. Intelligent investment advisory introduces technologies such as artificial intelligence into the field of investment advisory, using intelligent algorithms and automated management technology after portfolio investment to help users achieve customized investment advisory services that combine active and passive investment strategies, which can improve investment advisory efficiency and promote investment Gu industry intelligence upgrade. The emergence and rapid development of robo-advisors have caused greater impact and challenges on the face-to-face wealth management business models of my country's commercial banks, and it is also a good opportunity for the development of commercial banks. In recent years, many commercial banks in China have successively launched their own robo-advisory products. As a commercial bank with strong comprehensive strength in China, ICBC launched "AI" investment in 2017 and started robo-advisory business. Selecting ICBC’s “AI” investment for analysis can represent the basic development of Chinese commercial banks' robo-advisors.
This article adopts comparative analysis method, case analysis method and other research methods, takes "AI investment" of Industrial and Commercial Bank of China as a case, and analyzes the market data of "AI investment" products. In the research of this article, innovative user behavior analysis of Robo-Advisor products using the UTAUT model, combined with the characteristics of Robo-Advisor products, proposes new user behavior evaluation indicators. Compared with traditional wealth management products, users have less awareness of robo-advisors, and users will feel stronger information asymmetry. Information asymmetry and uncertain factors further cause users to perceive risks. Therefore, this research increases the perceived risk variable. At present, various domestic banks and Internet financial platforms have launched robo-advisory products. Users are faced with a variety of choices. Brand recognition and platform quality will also affect users' behavior. Therefore, this research has increased brand awareness and platform quality Two variables. Combining with the analysis of the influencing factors of ICBC robo-advisor product users’ purchasing behavior, take performance expectations, effort expectations, social influence, convenience, perceived risk, brand awareness, etc. as independent variables, use willingness as an intermediate variable, and use behavior as a dependent variable . Design questionnaires based on empirical model requirements, and collect relevant data for empirical analysis after implementation. According to the empirical results:
The intention to use has the most significant impact on the user’s behavior, with the path coefficient reaching 0.73 (p<0.001), which also shows that the user's intention to use will directly affect the use behavior. According to the various influencing factors, the order of path coefficients from large to small is: performance expectation, brand awareness, effort expectation, convenience conditions, platform quality, and perceived risk negatively affects willingness to use. Among them, the performance expectation has the greatest impact. The better the robo-advisor in terms of revenue and the lower the cost, the greater the customer's performance expectation, the greater the actual value perceived by the customer, and it will play a positive role in promoting the user's willingness to use .
The contribution of this article is mainly to build a robo-advisor user behavior evaluation model, and at the same time conduct a practical analysis of it, combined with the empirical analysis results, and put forward suggestions for improvement on the business development of ICBC "AI" investment. Financial institutions can optimize the robo-investment business in terms of increasing product revenue, improving product awareness, simplifying user operation procedures, and reducing user perceived risks. These conclusions and suggestions are of great significance to the development of robo-advisors.
Key Words: Intelligent Investment Advisory; ICBC "AI" Investment; UTAUT analys
Author(s)
ZHAO BINGQIAN
Issued Date
2022
Awarded Date
2022. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/24172
http://pknu.dcollection.net/common/orgView/200000602468
Affiliation
Pukyong National University. Graduate School of Management of Technology
Department
기술경영전문대학원 기술경영학과
Advisor
Chun DongPhil
Table Of Contents
1.Introduction 1
1.1 Research background 1
1.2 Imposed problems 3
1.3 Research Objectives 6
1.4 Contribution of this article 7
1.5 The main content and structure of this paper 8
2.Review of the literature 9
2.1 Research on the Application of Intelligent Machines in Investment Industry 10
2.1.1 Related concepts of smart machines 10
2.1.2 Research on Intelligent Machine Theory 11
2.1.3 Research on the Application of Intelligent Machines in Investment Industry 13
2.2 Research on the definition of robo-advisor 15
2.3 Research on the role and characteristics of robo-advisors 18
2.3.1 The role of robo-advisor 18
2.3.2 Features of robo-advisor 20
2.3.3 Problems with robo-advisors 22
2.4 Research on the development trend of robo-advisory platforms 24
2.5 Research on Influencing Factors of Robo-Advisor User Behavior 25
2.5.1 Research on investor user behavior 26
2.5.2 Research on Integrated Technology Acceptance and Use Model 28
2.5.3 Research on Variables of Robo-Advisor User Behavior Model 29
2.6 literature review 31
3.Theoretical basis and methodology 31
3.1 Relevant theoretical basis of the study 32
3.1.1 Asset allocation theory 32
3.1.2 Portfolio Theory 33
3.1.3 Perceived risk theory 36
3.1.4 Theory of Rational Behavior 37
3.1.5 Theory of planned behavior 39
3.1.6 Robo-advisor user behavior impact analysis model theory 41
3.2 Research object 44
3.2.1 Overview of the development of robo-advisors in China's commercial banks 44
3.2.2 Introduction of ICBC Robo-Advisor 56
3.3 Research Methodology 66
4.Study design 68
4.1 Identification of variables and formulation of research hypotheses 68
4.1.1 User behavior analysis 68
4.1.2 Determination of variables 71
4.1.3 Formulation of the research hypothesis 83
4.2 Construction of the empirical analysis model and questionnaire design 87
4.2.1 Model construction 87
4.2.2 Questionnaire design 88
5.Analysis results 90
5.1 Descriptive statistical analysis 90
5.1.1 Descriptive statistical analysis of the basic information of the sample 90
5.1.2 Descriptive statistical analysis of variables 92
5.2 Reliability and validity tests 94
5.2.1 Reliability analysis 94
5.2.2 Validity analysis and factor analysis 95
5.3 Structural model validation 100
5.3.1 Hypothesis validation 100
5.3.2 Model optimization 101
5.3.3 Hypothesis validation results 103
5.4 Empirical Results Discussion 105
5.5 ICBC AI Investment's business optimization suggestions 108
5.5.1 Raising performance expectations 109
5.5.2 Raising user effort expectations 111
5.5.3 Perceived Risk Reduction 113
6.Conclusion 116
6.1 Conclusion 116
6.2 Insights 117
6.2.1 Reducing marginal costs facilitates coverage of long-tail customers 118
6.2.2 Restructuring data processing to improve service efficiency 119
6.2.3 Provide personalized optimal configuration to enhance user stickiness 119
6.2.4 Improve investment rationality and cultivate correct investment philosophy 120
6.3 Limitations and Prospects 121
Degree
Doctor
Appears in Collections:
기술경영전문대학원 > 기술경영학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.