PUKYONG

감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계

Metadata Downloads
Abstract
According to the growth of the service industry, mental illness and stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, most emotional labor workers including customer service representatives are not being protected. this emphasizes insufficient substantial protection systems and the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition algorithm. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data sets including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers without any surveillance by management.
Author(s)
옥유선
Issued Date
2022
Awarded Date
2022. 2
Type
Dissertation
Keyword
Deep Learning Emotional Labor Stress Facial Expression Recognition CNN
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/24201
http://pknu.dcollection.net/common/orgView/200000600477
Affiliation
부경대학교 산업대학원
Department
산업대학원 컴퓨터공학과
Advisor
조우현
Table Of Contents
Ⅰ. 서론 1
Ⅱ. 관련 연구 4
2.1 스트레스 감지(Stress Recognition) 4
2.2 CNN(Convolutional Neural Network) 7
2.3 이미지 분류 CNN 알고리즘 8
2.4 얼굴감정인식(FER:Facial Expression Recognition) 9
Ⅲ. 본론 10
3.1 학습 데이터셋 구성 11
3.2 데이터 전처리 (Data Pre-Processing) 14
3.3 얼굴검출(Face Detection and Cropping) 모듈 15
3.4 Facial Expression Recognition(FER)모듈 17
3.5 스트레스 데이터 수치화(Digitalize) 모듈 24
Ⅳ. 실험결과 및 테스트 26
4.1 FER 모듈 실험결과 26
4.2 실시간 스트레스 감지 테스트 29
4.3 스트레스 감지 시스템 시각화 32
Ⅴ. 결론 33
Ⅵ. 참고문헌 34
Degree
Master
Appears in Collections:
산업대학원 > 컴퓨터공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.