A research on luminescent properties of rare-earth activated oxide-based phosphors for light-emitting diodes and optical thermometry
- Abstract
- 희토류가 첨가된 형광체는 우수한 화학적 내구성과 흥미로운 발광 작용으로 고체 조명, 광학 온도계, 플라즈마 디스플레이 패널, 필드 방출 디스플레이, 액정 디스플레이, 광학 바이오마커 등 다양한 분야에서 큰 성과와 발전을 이루었다. 이 논문의 목적은 발광 다이오드와 광학 온도계를 위한 희토류가 첨가된 산화물 기반 형광체를 개발하는 것이다.
먼저, Eu3+가 첨가된 Gd2W1-xMoxO6 형광체를 고상법으로 합성했다. Mo6+이온 농도를 조절하여 연구된 샘플의 여기 밴드를 점차 긴 파장으로 이동시켰다. 376 nm 이하에서는 610 nm의 강한 적색 형광과 591 nm의 약한 황색 형광이 검출돼 Eu3+가 호스트 격자에 비반전 대칭 자리를 점유하고 있는 것으로 나타났다. Mo6+의 도판트 농도를 증가하면서 합성된 형광체의 형광강도가 크게 높아져 x = 0.95일 때 Gd2WO6:Eu3+ 화합물 보다 2.33배 높은 최적치를 달성했다. 그 결과 샘플의 양자 효율은 76.1%에 달했다. 근자외선 칩과 Gd2W0.05Mo0.95O6:Eu3+ 형광체로 구성된 적색 LED 장치가 성공적으로 제작되었다. 이러한 결과는 Eu3+가 도핑된Gd2W1-xMoxO6 형광체가 w-LED의 적색 성분으로 잠재적 가치를 가지고 있음을 확인했다.
둘째, Er3+가 첨가된 NaSrLa(MoO4)O3 형광체는 고상법에 의해 합성되었으며, 이는 377 nm 여기 하에서 Er3+ 이온의 (2H11/2, 4S3/2) → 4I15/2 전이에 따른 밝은 녹색 형광을 나타냈다. 임계거리는 25.32Å으로 추정되었고, 쌍극자-쌍극자 상호작용은 NaSrLa(MoO4)O3 호스트 격자에서 Er3+ 이온 사이의 에너지 전달에 중요한 역할을 했다. 100 mA의 순방향 바이어스 전류에서 LED 장치는 육안으로 관측할 수 있는 (0.2547, 0.5996)의 색상 좌표로 밝은 녹색 형광을 방출했다. 또한 2H11/2 및 4S3/2의 열 커플링 레벨을 기반으로 303–483 K의 온도 범위에서 제조된 형광체의 온도 감지 성능을 형광 강도비를 사용하여 연구하였다. 최대 센서 감도는 약 0.0150 K-1이었고 Er3+ 이온 농도는 연구된 샘플의 센서 감도에 크게 영향을 미쳤다. 이러한 특성은 Er3+가 첨가된NaSrLa(MoO4)O3 형광체가 발광 다이오드와 광학 온도계를 위한 이중 기능 재료라는 것을 입증했다.
그 다음, Eu3+가 첨가된 Ca3Mo0.2W0.8O6형광체는 근자외선과 청색광선 여기에 Eu3+ 이온의 5D0 → 7F2 전이에서 주로 밝은 적색 형광을 보이며 고온기술에 의해 성공적으로 제조하였다. 365, 393, 465 nm의 여기 하에서 최적의 도핑 농도는 9% mol이었고 전기 다중 극자 상호작용은 Ca3Mo0.2W0.8O6 호스트 격자에서 Eu3+ 이온 사이의 비방사 에너지 전달에 기여했다. 또한, 제조 된 w-LED는 30 mA의 주입 전류에 의해 구동 될 때 우수한 CIE 좌표, 높은 연색지수 및 낮은 상관 색온도와 같은 우수한 성능으로 따뜻한 백색광을 방출했다. 궁극적으로, 온도에 대한 감쇠 시간의 반응에 따라 298–573 K의 온도 범위에서 생성 된 형광체의 열측정 성능이 연구하였습니다. 연구된 형광체의 최대 센서 감도는 523 K에서 최대 1.16% K-1에 도달했다. 이러한 성과들은 Eu3+가 첨가된Ca3Mo0.2W0.8O6형광체가 발광 다이오드와 광학 온도계의 유망한 후보임을 나타낸다.
나아가 고상법으로 Bi3+/Eu3+가 첨가된GdNbO4 형광체 시리즈를 준비했다. 308 nm 여기 하에서 Bi3+에서 Eu3+ 이온으로의 에너지 전달은 쌍극자-사중극자 상호작용 메커니즘에 속하며, GdNbO4:Bi3+/Eu3+ 화합물들이 조정 가능한 다중색 형광을 나타낼 수 있게 하였다. 획득한 샘플의 온도에 따른 광 발광 방출 및 내수성 거동을 상세하게 조사하였다. 우리는 Bi3+와 Eu3+ 이온 사이의 다양한 열 퀀칭 성능과 그 특징적인 색 발광의 장점을 최대한 이용하여 고감도 비침전 광학 온도계를 설계했다. 최종 화합물의 최대 절대 및 상대 센서 민감도는 각각 0.0367 K-1과 3.81% K-1이었다. 위의 특징들은 Bi3+/Eu3+가 첨가된 GdNbO4 형광체를 비접촉 온도 측정을 위한 잠재적 발광 물질로 사용할 수 있음을 나타냈다.
마지막으로 Eu2+/Eu3+가 첨가된SrAl2Si2O8 형광체는 4f65d →4f7이온의Eu2+ 전이에서 발생하는 청색 형광과 Eu3+ 이온의 5D0 → 7FJ 전이에서 발생하는 적색 형광을 고상법에 의해 합성되었다. 도핑농도가 3 mol%일 때 Eu2+와 Eu3+ 이온의 형광강도는 도판트 함량이 증가하면서 증가했고 최대치에 도달했다. 또한 Eu2+ 및 Eu3+ 이온의 다양한 열적 거동에 기초하여 SrAl2Si2O8:Eu2+/Eu3+ 형광체의 열 성능이 형광 강도비에 의해 조사되었다. 최대 절대 감도와 상대 감도는 각각 0.056 K-1과 0.30% K-1로 583 K의 온도였다. 이외에도 온도에 대한 감쇠 시간의 다양한 반응을 분석하여 Eu2+와 Eu3+ 이온의 온도 성능도 298-583 K의 온도 범위에서 논의하였다. 연구된 형광체의 최대 상대 민감도는 573 K에서 최대 0.22% K-1에 달했다. 이러한 결과는 Eu2+/Eu3+가 첨가된SrAl2Si2O8 형광체가 비접촉 광학 온도측정 분야에서 잠재력을 가지고 있음을 시사한다.
The rare-earth activated phosphors have attained great achievement and progress in various fields including solid-state lighting, optical thermometry, plasma display panels, field emission displays, liquid crystal displays and optical biomarkers due to the excellent chemical durability and intriguing luminescence behavior. The purpose of this dissertation is to develop the rare-earth activated oxide-based phosphors for light-emitting diodes and optical thermometry.
A series of the 0.3Eu3+-activated Gd2W1-xMoxO6 phosphors were synthesized by a high-temperature solid-state reaction method. Adjusting the Mo6+ ion concentration, the excitation band of the studied sample was gradually shifted to longer wavelength. Under 376 nm excitation, the strong red emission at 610 nm and weak yellow emission centered at 591 nm were detected, indicating that Eu3+ occupies non-inversion symmetry sites in the host lattices. With increasing the dopant concentration of Mo6+, the emission intensity of synthesized products was greatly enhanced and achieved its optimum value when x = 0.95, which was 2.33 times higher than that of the Gd2WO6:0.3Eu3+ compounds. The quantum efficiency of Gd2W0.05Mo0.95O6:0.3Eu3+ was as high as 76.1%. A red LED device, which consisted of a near-ultraviolet chip and prepared Gd2W0.05Mo0.95O6:0.3Eu3+ phosphors, was successfully fabricated. These results confirmed that the Eu3+-doped Gd2W1-xMoxO6 phosphors had potential value as the red component for white-LEDs (w-LEDs).
Secondly, Er3+‐activated NaSrLa(MoO4)O3 phosphors were synthesized by a traditional solid‐
state reaction technique, which exhibited bright green emissions ascribing to the
(2H11/2, 4S3/2) → 4I15/2 transitions of Er3+ ions under 377 nm excitation. The critical
distance was estimated to be 25.32 Å, and the dipole‐dipole interaction played a
significant role in energy transfer between Er3+ ions in NaSrLa(MoO4)O3 host
lattices. At a forward bias current of 100 mA, the LED device
emitted a bright green emission with the color coordinate of (0.2547, 0.5996) that
can be observed by the naked eye. Besides, based on the thermally coupled levels
of 2H11/2 and 4S3/2, the temperature sensing performances of the prepared phosphors
in the temperature range of 303‐483 K were studied using the fluorescence intensity
ratio technique. The maximum sensor sensitivity was about 0.0150 K-1 and the Er3+ ion concentration largely influenced the sensor sensitivity of studied samples. These characteristics demonstrated that the Er3+ activated NaSrLa(MoO4)O3 phosphors were dual‐functional
materials for light-emitting diodes and optical thermometry.
Then, Eu3+-activated Ca3Mo0.2W0.8O6 phosphors, which presented bright red emissions mainly from the 5D0 → 7F2 transition of Eu3+ ions upon the near-ultraviolet and blue light excitation, were successfully prepared by a traditional high-temperature technology. Under the excitation of 365, 393 and 465 nm, the optimal doping concentration was 9 mol% and the electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in Ca3Mo0.2W0.8O6 host lattices. Additionally, the fabricated w-LEDs emitted warm white light with excellent performance, such as good CIE coordinates, high color rending index and low correlated color temperature, when driven by 30 mA of injection current. Ultimately, according to the response of the decay time to the temperature, the thermometric performances of the resultant phosphors in the temperature range of 298–573 K were studied. The maximum sensor sensitivity of the studied phosphors reached up to 1.16% K-1 at 523 K. These achievements revealed that Eu3+-activated Ca3Mo0.2W0.8O6 phosphors were promising candidates for light-emitting diodes and optical thermometry.
We also prepared a series of Bi3+/Eu3+-activated GdNbO4 phosphors by solid-state reaction technique. Under 308 nm excitation, the energy transfer from Bi3+ to Eu3+ ions, which belonged to the dipole-quadrupole interaction mechanism, allowed the GdNbO4:Bi3+/Eu3+ compounds to display tunable multi-color emissions. The temperature dependent photoluminescence emission and water resistance behaviors of the obtained samples were investigated in detail. Taking full advantage of the diverse thermal quenching performance between Bi3+ and Eu3+ ions along with their distinct characteristic color emission, we designed a highly sensitive non-invasion optical thermometer. The maximum absolute and relative sensor sensitivities of the final compounds were about 0.0367 K−1 and 3.81% K−1, respectively. These above characteristics indicated that Bi3+/Eu3+-activated GdNbO4 phosphors can be used as potential luminescent materials for non-contact temperature measurement.
Finally, Eu2+/Eu3+-activated SrAl2Si2O8 phosphors, which presented blue emission originating from 4f65d → 4f7 transition of Eu2+ ions and red emission arising from 5D0 → 7FJ transition of Eu3+ ions, were synthesized by solid-state reaction method in the air. The photoluminescence intensities of Eu2+ and Eu3+ ions increased with arising the dopant content and reached their maximum value when the doping concentration was 3 mol%. Moreover, based on the diverse thermal behaviors of Eu2+ and Eu3+ ions, the thermometric performance of the SrAl2Si2O8:Eu2+/Eu3+ phosphors were investigated by fluorescence intensity ratio technology. The maximum absolute sensitivity and relative sensitivity were 0.056 K-1 and 0.30% K-1, respectively, at the temperature of 583 K. Besides, through analyzing the various responses of the decay time to temperature, the thermometric performances of the Eu2+ and Eu3+ ions were also discussed in the temperature range of 298-583 K. The maximum relative sensitivity of the studied phosphors reached up to 0.22% K-1 at 573 K. These results suggested that the Eu2+/Eu3+-activated SrAl2Si2O8 phosphors had the potential in the field of non-contact optical thermometry.
- Author(s)
- XUE JUNPENG
- Issued Date
- 2020
- Awarded Date
- 2020. 8
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/2437
http://pknu.dcollection.net/common/orgView/200000336628
- Affiliation
- Pukyong National university, Graduate school
- Department
- 대학원 물리학과
- Advisor
- Jung Hyun Jeong
- Table Of Contents
- Chapter 1. Introduction 1
1.1 Luminescent materials 1
1.1.1 Definition of Luminescent Materials 1
1.1.2 Luminescence classification 2
1.1.3 Rare earth doped luminescent materials 3
1.1.4 The main characteristics of rare earth activated luminescent materials 5
1.2 Rare earth activated phosphors in light emitting diodes 10
1.2.1 The history of solid-state lighting 10
1.2.2 The basic principle of LED 12
1.2.3 Strategies to produce white LEDs 13
1.2.4 Parameters characterizing the performance of LEDs 14
1.3 Rare earth activated phosphors in optical thermometry 16
1.3.1 Principle of optical thermometry 18
1.3.2 Fluorescence intensity ratio 18
1.3.3 Lifetime 21
1.4 Motivation and summary of the dissertation 22
Chapter 2. Experimental and Characterization 25
2.1 Materials 25
2.2 Preparation 25
2.3 Materials characterization 27
2.3.1 X-ray analysis 27
2.3.2 SEM and TEM 28
2.3.3 Spectral analysis 28
2.4 Theory Calculation 29
2.5 Fabrication of the LED device 29
Chapter 3. Molybdenum substitution induced luminescence enhancement in Gd2W1-xMoxO6:Eu3+ phosphors for near ultraviolet based solid-state lighting 30
3.1 Refinement, phase identification, and crystal structure 32
3.2 First-principles calculations and Band structure analysis 35
3.3 Photoluminescence properties of Gd2W1-xMoxO6:Eu3+ phosphors 38
3.4 Judd-Ofelt analysis and intensity parameters 42
3.5 Thermal stability, decay curves and quantum efficiency 44
3.6 Electroluminescence performance of fabricated LED devices 47
3.7 Conclusions 49
Chapter 4. NUV light induced visible emission in Er3+-activated NaSrLa(MoO4)O3 phosphors for green LEDs and thermometer 50
4.1 Crystal structures, phase identification and morphology 51
4.2 Luminescence properties at room temperature 56
4.3 Thermal and chemical stability of developed phosphors 61
4.4 Electroluminescence performance of the fabricated LED device 62
4.5 Ratiometric temperature sensing 66
4.6 Conclusions 72
Chapter 5. Eu3+-activated Ca3Mo0.2W0.8O6 red-emitting phosphors: a near-ultraviolet and blue light excitable platform for solid-state lighting and thermometer 73
5.1 Structural properties and morphology 75
5.2 Electronic structure and optical band gap 79
5.3 Photoluminescence properties of CMWO:xEu3+ phosphors 82
5.4 Thermal stability behaviors and quantum efficiency of resultant phosphors 88
5.5 EL properties of the fabricated white-LEDs 89
5.6 Optical thermometric properties of the Eu3+-activated CMWO phosphors 93
5.7 Conclusions 97
Chapter 6. Non-contact thermometry via efficient Bi3+ → Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors 98
6.1 Crystal structure and phase identification 100
6.2 Luminescence properties at room temperature 105
6.3 Thermal stability and water resistance behaviors of prepared phosphors 115
6.4 Optical thermometry behavior 117
6.5 Conclusions 121
Chapter 7. Achieving non-contact optical thermometer via inherently Eu2+/Eu3+ activated SrAl2Si2O8 phosphors prepared in air 122
7.1 Crystal Structure and Microstructure Performance 123
7.2 Luminescence properties at room temperature 126
7.3 Optical thermometry behavior 129
7.4 Conclusions 140
Chapter 8. Summary and Future Work 141
8.1 Summary 141
8.2 Future work 143
References 144
Acknowledgements 162
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 물리학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.