Bioactive compounds recovered from Pseuderanthemum palatiferum (Nees) Radlk. leaves using pressurized liquid: characterization, purification, and application
- Alternative Title
- 가압유체를 이용하여 Pseuderanthemum palatiferum (Nees) Radlk.의 잎으로부터 회수된 생리활성 물질 : 특성, 정제 및 적용
- Abstract
- Pseuderanthemum palatiferum (Nees) Radlk.는 19세기 후반 베트남에서 발견된 새로운 약용식물로서, 폴리페놀계, 다당류, 지질 및 단백질과 같은 수많은 생물 활성 성분을 가지고 있다는 여러 과학적 보고가 있었다. 또한, 이 식물의 잎은 간, 신장, 대장 (결장), 유방암, 고혈압, 당뇨병, 심혈관질환, 치질, 복통, 출혈, 관절염, 설사, 변비, 독감 등 인체 질병 예방 및 치료에 있어 다양한 생체기능적 특성을 가지고 있음이 검증되었으며, 베트남과 태국에서 사람들의 건강을 증진시키기 위하여 차로 널리 이용되어 왔다. 현재 상용화된 제품은 품질 관리를 통해 마케팅을 해왔다. 이는 종래의 추출 기술이 적용되었지만, 본 식물로부터 생리 활성 화합물을 회수하기 위한 친환경 기술을 적용하는 것은 여전히 미비하다. 따라서, 본 연구에서는 아임계 수 (SW)를 이용하여P. palatifeurm의 잎으로부터 얻은 생체 활성 화합물의 특성 및 적용에 대한 기초 연구를 진행하였다.
첫 번째 연구에서는 아임계 수 추출 (SWE)을 이용하여 P. palatifeurm의 잎으로부터 생리 활성 화합물을 회수하였으며, 비교를 위하여 열수, 속슬렛 및 메탄올 추출법을 진행하였다. 추출물의 기능성 화합물 분석을 위하여 고성능 액체 크로마토그래피 (HPLC)를 사용하였으며, 항산화능 평가를 위하여 일반적으로 사용되는2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) 및 철 이온 환원력 (FRAP) 활성 측정을 진행하였다. 또한, 7 가지 병원성 박테리아 균주에 대한 추출물의 항균 능력이 평가되었다. 결과로서, SWE을 이용하여 얻은 추출물의 사포닌, 페놀 및 단백질의 함량은 각각 170℃, 190℃ 및 230℃의 조건에서 최대 33.82±2.08 mg dosgenin/g, 34.87±0.29 mg CE/g 및 104.66±7.63 mg BSA/g으로 나타났다. 총 당 및 플라보노이드 함량은 130℃에서 각각 최대 211.73±1.58 mg glucose/g 및 20.71±0.42 mg RE/g으로 나타났으며, 이는 열수, 속슬렛, 메탄올 추출에서 얻은 값보다 높았다. 고성능 액체 크로마토그래피 (HPLC) 분석을 통하여 플라보노이드 성분인 아피제닌 (apigenin) 및 캠퍼롤 (kaempferol)은 각각 170 ℃ 및 190℃ 의 조건에서 3.46±0.03 mg/g 및 2.43±0.03 mg/g으로 가장 높았다. 또한, SWE 추출물은 기존의 추출법과 비교하여 7개의 병원성 세균 균주 중 5개가 더 높은 항균 활성을 보여주었다. 따라서, SW은 P. palatifeurm 잎으로부터 기능성 화합물을 추출하기 위하여 효율적인 청정 용매로서 활용될 수 있다.
두 번째 연구에서 PLE을 이용하여 P. palatifeurm 잎으로부터 총 페놀성분 (TPC), gallic acid 및 p-hydroxybenzoic acid (PHBA)의 회수는 반응 표면 방법론을 통해 최적 추출 조건을 확립하였다. 본 연구에서, 온도 (80~200℃), 유속 (2~10 mL/min) 및 수용성 에탄올 (0~99.99%)을 포함한 3 가지 독립적인 요소를 이용하여 TPC, GA 및 PHBA 추출에 미치는 영향을 관찰하였다. 최적화된 TPC 추출물 (OP)은 가스크로마토그래피-질량 분석 (GC-MS), HPLC 및 분광광도계 분석을 통하여 확인하였으며, OP는 IC50 값을 결정하기 위해 항산화, 항균, 항고혈압 및 세포 독성 활동에 대해 연구하였다. 결과로서, 모든 추출 모델이 추출 과정을 예측하는데 적합하다는 것을 보여주었다 (p<0.05). TPC 추출을 위한 최적 조건은 186℃, 8.8 mL/min 및 30% 수용성 에탄올이었다. 추출 파라미터에서의 OP는 생체 기능적 특성을 담당하는 많은 양의 생리활성 화합물을 함유하는 것이 밝혀졌다. 또한, OP는 1000 µg/mL 이하의 농도를 갖는 HaCaT 세포에서 독성을 나타내지 않았다. 본 결과를 통해, PLE에서의 수용성 에탄올은 P. palatifeurm 잎으로부터 TPC를 회수하기 위한 잠재적인 기술 및 적합한 용매일 수 있다.
세 번째 연구에서는 P. palatifeurm 잎으로부터 폴리페놀-다당류(PP)를 분리하여 화학적 프로파일 및 항응고제 활성 측면에서 0.1 M NaOH 용액을 사용한 종래의 기술과 비교하였다. 추출물은 이전에 보고된 방법에 따라 정제하여 PP 접합체를 얻었으며, 이어서 화학적 조성 및 항응고제 활성에 대해 추가로 연구하였다. 적외선 분광기 (FT-IR), UV-Vis, 핵 자기공명 (NMR), 겔 투과 크로마토그래피 (GPC) 및 분광 광도 분석을 이용하여 선택적인 PP 접합체의 특성을 분석하였다. 그 결과, 탄수화물, 페놀 및 단백질 성분으로 구성된 PP 접합체는 2.76~14.34% 범위의 수율을 나타내었다. 모든 결합체에 함유된 7개의 단당, 즉 arabinose, fucose, galactose, glucose, mannose, rhamnose 및 xylose의 함량은 HPLC를 이용하여 분석되었다. 150℃ 에서 PLE로부터 얻은 PP 접합체 (PP-PLE5)는 200℃ 에서 발견된 접합부보다 더 우수한 항응고제 활성을 보였으며, 종래의 기술에 비해 우수하였다. GPC에서는150℃, 10 mL/min 및 물을 용매로 사용한 PP-PLE는 6~642 kDa의 광범위한 분자량을 나타내었다. 본 결과로부터, SW은 약용식물뿐만 아니라 P. palatifeurm 잎으로부터 PP 접합체를 회수하기 위한 적합한 용매이다.
네 번째 연구에서는 SWE을 이용하여 식품 포장에 P. palatifeurm잎에서 추출한 생리 활성 화합물을 예비 적용하였다. 본 연구에서는 SW로부터 얻은 P. palatifeurm잎의 동결건조 분말 (PFP)에 젤라틴-나트륨 알긴삼염 (GSA) 기반 필름을 완성하였다. GSA 기반 필름의 물리적 특성 및 항산화 활성에 대한 다양한 농도의 PFP에 대한 영향을 조사하였다. PFP 농도의 증가에 따라 총 페놀 함량 및 항산화 활성은 증가하였으며, 수증기 투과성 (WVP)은 감소한 반면에 수용성 (WS)은 증가하였다. 또한, 필름의 수분 함량 (MC)은 유의적인 차이가 없었다. 기계적 특성과 관련하여, GSA 기반 필름의 인장 강도 (Ts)는 증가하였으나, 필름 형성 용액에서 PFP의 함량이 증가하면서 신장율 (EAB)은 감소하였다. GSA 기반 필름은 우수한 미세구조, 내열성 및 젤라틴과 페놀 화합물간의 상호 작용을 나타내었다. 따라서, SWE의 이용은 식품 포장에 있어 항산화 및 물리적인 특성 개선시켜 식품 포장에 응용할 수 있다.
Pseuderanthemum palatiferum (Nees) Radlk. (P. palatiferum) is a novel plant discovered in the late 19th century in Vietnam. There have been some scientific reports that this plant contains numerous bioactive components, such as polysaccharides, triterpenoid saponins, lipids, proteins. It has been also proven that the leaf and root of this plant possess varying biological activities in the prevention and treatment of human diseases, such as liver, kidney, colon, and breast cancers; hypertension, diabetes, cardiovascular diseases; diahrrea, hemorrhoids, stomachache, bleeding, arthritis, constipation, flu. Therefore, it has been widely used as a tea to promote people's health in Vietnam and Thailand. Moreover, commercial products have been marketing with controlled quality. Although some conventional extraction techniques have been applied, the application of green and effective methods in the recovery of these components from this plant has not been reported. Therefore, in this study, we used pressurized liquid extraction (PLE) to extract bioactive compounds from P. palatiferum leaves.
In the first work, we examined the recovery of valuable compounds from P. palatiferum leaves using subcritical water (SW) in comparison with hot water, soxhlet, and methanol extraction. High-performance liquid chromatography (HPLC) and three commonly used assays, i.e., 2,2-diphenyl-1-picrylhydrazyl assays, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing antioxidant power, were employed for the measurement of valuable compounds and their antioxidant capacities, respectively. Additionally, the antimicrobial activity of the various extracts against seven pathogenic bacteria strains was also assessed. The results demonstrated that the extracts obtained from subcritical water extraction (SWE) contain the highest amount of saponin (33.82 ± 2.08 mg Dosgenin/g), phenolic (34.87 ± 0.29 mg CE/g), and protein (104.66 ± 7.63 mg BSA/g), which are obtained at 170oC, 190oC, and 230oC, respectively. The highest amounts of total sugar and flavonoids (211.73 ± 1.58 mg glucose/g and 20.71 ± 0.42 mg RE/g, respectively) were obtained at a lower temperature (130oC and 130oC, respectively), and these values were higher than those obtained from hot water, Soxhlet, and methanol extraction. HPLC results indicated that the highest amount of apigenin (3.46 ± 0.03 mg/g) and kaempferol (2.43 ± 0.03 mg/g) was obtained by SWE at 170oC and 190oC, respectively. Furthermore, the extracts from SWE exhibited higher antimicrobial activity against five of the seven pathogenic bacterial strains tested compared with those obtained from conventional extraction methods. Therefore, SW could be utilized as a cost-effective and green solvent to extract valuable compounds from P. palatiferum leaves.
In the second study, the recovery of total phenolic content (TPC), gallic acid (GA), and p-hydroxybenzoic acid (PHBA) from P. palatiferum leaves using PLE was optimized using response surface methodology. In this work, three independent factors, including temperature (80‒200°C), flow rate (2‒10 mL/min), aqueous ethanol (0‒99.99%) were used to observe their influences on the extraction of TPC, GA, and PHBA. The crude extract at the optimum condition of TPC named OP was characterized using gas chromatography-mass spectrometry (GC-MS), HPLC analysis, and spectrophotometric assays. Furthermore, the OP was studied about antioxidant, antimicrobial, antihypertensive activities, and cytotoxicity to determine half-maximal inhibitory concentration (IC50) values. The results showed that all extraction models were appropriate to predict the extraction processes (p<0.05). The optimum conditions for the extraction of TPC were 186°C, 8.8 mL/min, and 30% aqueous ethanol. The OP contained a high amount of bioactive compounds that are responsible for its great biological properties. Moreover, the OP was nontoxic on HaCaT cells with a concentration of no more than 1000 µg/mL. For that reason, pressurized aqueous ethanol could be a green and suitable solvent for the recovery of TPC from P. palatiferum leaves.
In the third study, polyphenolic–polysaccharide (PP) from P. palatiferum leaves was isolated using 0.1 M sodium hydroxide and pressurized liquid. The extracts were purified according to the known method reported previously to obtain PP conjugates which were further studied about chemical profiles and anticoagulant activity. Fourier-transform infrared spectroscopy (FT-IR), UV-Vis, nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and spectrophotometric assays were used to characterize the selected PP conjugates. The results showed that PP conjugates comprised of carbohydrate, phenolic, and protein constituents with the yield ranged from 2.76% to 14.34%. SW was more effective than aqueous ethanol in the recovery of PP conjugate in terms of total yield, polyphenolics, and polysaccharides. Seven mono sugars containing in all conjugates were determined using HPLC, namely, arabinose, fucose, galactose, glucose, mannose, rhamnose, and xylose. PP conjugates obtained from PLE at 150°C (PP-PLE5) using water exhibited better anticoagulant activity than those found at 200°C and comparable to that of the technique using NaOH. On gel permeation chromatography, PP-PLE5 showed a broad molecular mass from 6 to 642 kDa. From the obtained results, SW is a suitable solvent for the isolation of PP conjugate from P. palatiferum leaves as well as medicinal plants.
The last study was a preliminary application of bioactive compounds from P. palatiferum leaves in food packaging using SWE. In this study, gelatin-sodium alginate (GSA) based films were integrated with P. palatiferum leaves freeze-dried powder (PFP) obtained by using SW. The influences of PFP at different concentrations on physical properties and antioxidant activity of GSA based films were investigated. Total phenolic content, antioxidant activity increased with the increase in PFP concentrations. Moisture content (MC) of films was not significantly different, water vapor permeability (WVP) decreased, while water solubility (WS) increased with the growth of PFP concentrations. Regarding mechanical properties, tensile strength (Ts) of GSA based films was improved; however, elongation at break (EAB) decreased when the content of PFP in film-forming solutions increased. GSA based films exhibited good microstructure, thermal resistance, and interaction between gelatin and phenolic compounds. Therefore, bioactive components from P. palatiferum leaves obtained by using SWE could be also applied for the improvement of antioxidant capacity and physical properties of food packaging.
- Author(s)
- HO CONG TRUC
- Issued Date
- 2020
- Awarded Date
- 2020. 8
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/2446
http://pknu.dcollection.net/common/orgView/200000339499
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 식품공학과
- Advisor
- 전병수
- Table Of Contents
- Chapter 1 1
General Introduction 1
1.1. Pseuderanthemum palatiferum (Nees) Radlk. 1
1.1.1. Background 1
1.1.2. Chemical compositions 3
1.1.3.Biological properties 6
1.2. Isolation and purification of polyphenolic-polysaccharide conjugates from plants 12
1.2.1. Polyphenolics 12
1.2.2. Polysaccharides 19
1.2.3. Polyphenolic-polysaccharide conjugates 22
1.3. Edible films and active packaging 25
1.4. Subcritical water extraction (SWE) and pressurized liquid extraction (PLE) 27
1.4.1. Background of extraction techniques 27
1.4.2. Subcritical water (SW) 35
1.4.3. SWE and PLE 39
1.4.4. Applications 44
1.5. Objectives of the study 48
References 49
Chapter 2 63
Extraction of bioactive compounds from P. palatiferum using subcritical water and conventional solvents: a comparison study 1 63
2.1. Introduction 63
2.2. Materials and methods 65
2.2.1. Materials 65
2.2.2. Proximate analysis 66
2.2.3. Extraction 68
2.2.4. Quantification of bioactive components 70
2.2.5. Assessment of biological activities 79
2.2.6. Statistical analysis 84
2.3. Results and discussion 85
2.3.1. Proximate analysis 85
2.3.2. Extraction yields and content of bioactive components 85
2.3.3. Antioxidant capacity 93
2.3.4. Antimicrobial activity 93
2.3.5. HPLC analysis 97
2.4. Conclusions 101
References 102
Chapter 3 108
Pressurized liquid extraction of phenolics from P. palatiferum leaves: optimization, characterization, and functional properties 2 108
3.1. Introduction 108
3.2. Materials and methods 110
3.2.1. Materials 110
3.2.2. Pressurized liquid extraction (PLE) 111
3.2.3. Estimation of bioactive compositions 111
3.2.4. HPLC analysis 112
3.2.5. Antioxidant assays 113
3.2.6. Antimicrobial assays 115
3.2.7. In vitro antihypertensive activity assay 116
3.2.8. Cytotoxicity assays 116
3.2.9. Gas chromatography–mass spectroscopy (GC–MS) analysis 117
3.2.10. Response surface methodology 117
3.3. Results and discussion 118
3.3.1. Statistical analysis and model fitting 118
3.3.2. Determination of bioactive compounds 125
3.3.3. Antioxidant capacitiy 130
3.3.4 Antimicrobial activity 130
3.3.5. Antihypertensive activity 131
3.3.6. Cytotoxicity 134
3.4. Conclusions 138
References 139
Chapter 4 147
Green extraction of polyphenolic-polysaccharide conjugates from P. palatiferum leaves: chemical profile and anticoagulant activity 3 147
4.1. Introduction 147
4.2. Materials and methods 150
4.2.1. Materials 150
4.2.2. Extraction of PP from P. palatiferum leaves 151
4.2.3. Purification of PP from P. palatiferum extracts 151
4.2.4. Determination of chemical compositions 152
4.2.5. Determination of monosaccharides 153
4.2.6. In vitro clotting assays 154
4.2.7. Cytotoxicity 154
4.2.8. Gel permeation chromatography (GPC) analysis 154
4.2.9. Fourier transform infrared (FT-IR) spectroscopy 155
4.2.10. Nuclear magnetic resonance (NMR) spectroscopy 155
4.2.11. Ultraviolet-visible (UV-Vis) analysis 155
4.2.12. Statistical analysis 155
4.3. Results and discussion 156
4.3.1. Isolation and chemical characterization of PP from P. palatiferum leaves 156
4.3.2. Anticoagulant capacity 163
4.3.3. Antioxidant capacity 167
4.3.4. Cytotoxicity 167
4.3.5. Fourier-transform infrared analysis (FT-IR) and UV-Vis analysis 169
4.3.6. Nuclear magnetic resonance (NMR) 172
4.3.7. Gel permeation chromatography (GPC) 175
4.4. Conclusions 177
References 178
Chapter 5 186
Gelatin-sodium alginate based films with P. palatiferum leaves freeze-dried powder obtained by subcritical water extraction 4 186
5.1. Introduction 186
5.2. Materials and methods 189
5.2.1. Materials 189
5.2.2. Subcritical water extraction (SWE) of P. palatiferum leaves 189
5.2.3. Preparation of gelatin-sodium alginate (GSA) films 190
5.2.4. Film thickness 191
5.2.5. Film color 191
5.2.6. Light transmission and transparency 191
5.2.7. Moisture content (MC) and water solubility (WS) 192
5.2.8. Water vapor permeability (WVP) 192
5.2.9. Total phenolic content (TPC) 193
5.2.10. Antioxidant capacity 193
5.2.11. Mechanical properties 194
5.2.12. Characterization of films 194
5.2.13. Statistical analysis 195
5.3. Results and discussion 195
5.3.1. Antioxidant activity 195
5.3.2. Mechanical properties 198
5.3.3. Water behavior 200
5.3.4. Color parameters 203
5.3.5. Film thickness and optical properties 205
5.3.6. Physical properties 207
5.4. Conclusions 211
References 212
Summary 219
Abstract (in Korean) 221
Acknowledgment 226
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 식품공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.