PUKYONG

Carbon-based nanostructured materials: A comprehensive study of synthesis, characterization and properties

Metadata Downloads
Abstract
Carbon-based nanostructured materials have attracted great deal of attention in various fields of nanoscience and nanotechnology. Among diverse types of carbon materials, graphene, a two-dimensional material which exhibits a range of fascinating properties such as excellent electrical and thermal conductivities, high mechanical flexibility and large specific surface area, which holds great promise in many applications. Therefore, graphene has natural advantages by means of these properties to significantly improve the electrical and functional properties of host polymers. The ultimate goal of this study is to prepare ultra-thin graphene nanosheets, as well as utilizing them as conductive fillers to fabricate high performance polymer composites. Exfoliated graphene sheets can be obtained from the oxidation of pristine graphite using Hummer’s method, and subsequently reduced using hydrazine monohydrate. Major contribution of this thesis includes (i) preparation and functionalization of graphene oxide (ii) and successful fabrication of graphene/conducting polymer nanostructures. Two types of chemical functionalization approaches have been specifically applied to enhance the interfacial adhesion between the graphene and polymer matrix, which are covalent and noncovalent approaches. Additionally, graphene filled poly (2-ethyl-2-oxazoline) composite is also prepared by solution mixing method. While the main focus of this work has been on graphene/polymer composites, carbon nanotube based polymer composites are also presented.
The chemical structure and morphologies of the composite materials have been systematically investigated by spectroscopic and microscopic techniques. Based on the experimental results, it is demonstrated that the carbon based polymer composites fabricated here have an extraordinary thermal and electrical conducting properties compared to the corresponding polymer matrices. The superior performance of the composite materials is attributed to high specific surfaces area, two-dimensional sheet geometry, strong filler-matrix adhesion and the outstanding conducting properties of the carbon nanostructures. Thus, the improved properties of the carbon-based composites, concurrent with the cost-effective synthesis are both vital requirements of the industry in adoption of high performance polymer composites for various structural applications.
Author(s)
Niranjanmurthi Lingappan
Issued Date
2013
Awarded Date
2013. 2
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/24614
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001965992
Affiliation
부경대학교 대학원
Department
대학원 이미지시스템공학과
Advisor
Kwon Taek Lim
Table Of Contents
Chapter 1. Carbon based Nanostructures ……………………………………………………. 2
1.1. Introduction to Nanomaterials and Nanotechnology …………………………………..... 2
1.2. Carbon based nanomaterials …………………………………………………………….. 2
1.3. Carbon nanotubes ………………………………………………….................................. 3
1.4. Graphene ………………………………………………………………………………… 6
1.5. Fundamental properties of graphene ……………………………………………………. 7
1.6. Applications …………………………………………………………….......................... 8
1.7. Graphene based polymer composites …………………………………………………… 9
1.8. Bibliography …………………………………………………………………………… 10

Chapter 2. Fabrication and characterization of graphene/poly (p-phenylenediamine) hybrids ………………………………………………………………………………………… 12
2.1. Introduction …………………………………………………………………………...... 13
2.2. Experimental Section …………………………………………………………….. .….. 14
2.2.1. Materials………………………………………………………………………… 14
2.2.2. Preparation of graphene nanosheets …………………………………………….. 14
2.2.3. In-situ polymerization of p-PDA in the presence of graphene sheets …………... 14
2.3. Results and Discussion ………………………………………………………………… 16
2.3.1. Structure of the graphene/PPDA composites …………………………………... 16
2.3.2. Atomic percentage of the composites by XPS ………………………………….. 17
2.3.3. Morphologies of the as-prepared composites …………………………………… 19
2.3.4. Electrical conductivity of the composites by four-probe method ………………. 21
2.4. Conclusions ……………………………………………………………………………. 21
2.5. Bibliography …………………………………………………………………………… 22
Chapter 3. Preparation and Characterization of poly (diphenylamine) functionalized graphene nanosheets ………………………………………………………………………….. 25
3.1. Introduction …………………………………………………………………………….. 26
3.2. Experimental details ……………………………………………………………………. 26
3.2.1. Materials…………………………………………………………………………. 27
3.2.2. Preparation of graphene oxide and graphene nanosheets……………………….. 27
3.2.3. Preparation of PDPA functionalized graphene sheets…………………………… 28 1
3.2.4. Characterization techniques……………………………………………………... 28
3.3. Results and Discussion…………………………………………………………………. 28
3.3.1. Crystalline structure of the graphene/PDPA composites ……………………….. 29
3.3.2. XPS spectra of the composites ………………………………………………….. 30
3.3.3. Chemical structure of the composites …………………………………………… 31
3.3.4. Raman spectra of the nanocomposites ………………………………………….. 32
3.3.5. FESEM HRTEM micrographs of the as-prepared composites …………………. 32
3.3.6. Thermal stability ………………………………………………………………… 34
3.4. Conclusions ……………………………………………………………………………. 35
3.5. Bibliography …………………………………………………………………………… 35

Chapter 4. One-pot synthesis of poly (3-methylthiophene)-grafted-graphene nanosheets.. 37
4.1. Introduction …………………………………………………………………………….. 38
4.2. Experimental procedures ………………………………………………………………. 39
4.2.1. Materials ………………………………………………………………………… 39
4.2.2. Preparation of graphene nanosheets …………………………………………….. 39
4.2.3. Preparation of GNs-f-P3MT composites ………………………………………... 40 1
4.2.4. Characterization …………………………………………………………………. 40
4.3. Results and Discussion ………………………………………………………………… 40
4.3.1. Structural and morphological aspects of the GNs-f-P3MT composites ………… 41
4.3.2. XPS analysis …………………………………………………………………….. 42
4.3.3. EDX and HRTEM images of the composites …………………………………… 43
4.3.4. Thermal properties ………………………………………………………………. 44
4.3.5. FESEM micrographs ……………………………………………………………. 45
4.3.6. XRD patterns of the GNs-f-P3MT composites …………………………………. 46
4.4. Conclusions …………………………………………………………………………….. 47
4.5. Bibliography …………………………………………………………………………..... 47


Chapter 5. Noncovalent grafting of poly (3-octylthiophene) at the edges of the graphene nanosheets ……………………………………………………………………………………... 50
5.1. Introduction …………………………………………………………………………….. 51
5.2. Experimental section …………………………………………………………………… 52
5.2.1. Materials ………………………………………………………………………… 52
5.2.2. Preparation of graphene oxide and graphene nanosheets ……………………….. 52
5.2.3. Preparation of P3OT functionalized graphene sheets ………………………….... 52 1
5.2.4. Characterization techniques …………………………………………………….. 53
5.3. Results and Discussion ………………………………………………………………… 53
5.3.1. Structural confirmation of noncovalent functionalization ………………………. 54
5.3.2. Core-level XPS spectra of composites ………………………………………… 55
5.3.3. Thermal properties of the composites …………………………………………… 56
5.3.4. Crystalline property of the composites ………………………………………….. 57
5.3.5. HRTEM and FESEM micrographs of the as-prepared composites …………….. 58
5.3.6. Optical properties of the hybrids ………………………………………………... 59
5.4. Conclusions …………………………………………………………………………….. 60
5.5. Bibliography …………………………………………………………………………… 61

Chapter 6. Synthesis and Characterization of Graphene Oxide/Poly (2-ethyl-2-oxazoline) Composites …………………………………………………………………………………….. 63
6.1. Introduction …………………………………………………………………………….. 64
6.2. Experimental details ……………………………………………………………………. 65
6.2.1. Materials…………………………………………………………………………. 65
6.2.2. Preparation of graphene oxide …………………………………………………... 65
6.2.3. Preparation of GO/PEOX composites by solution mixing method ……………... 66 1
6.2.4. Characterization …………………………………………………………………. 66
6.3. Results and Discussion ………………………………………………………………… 67
6.3.1. Chemical structure of the nanocomposites ……………………………………… 67
6.3.2. Thermal stability ………………………………………………………………… 68
6.3.3. XRD pattern of the GO/PEOX composites ……………………………………... 69
6.3.4. FESEM and EDX analyses of the composites ……………………………….. 70
6.3.5. HRTEM micrographs …………………………………………………………… 71
6.4. Conclusions …………………………………………………………………………….. 70
6.5. Bibliography …………………………………………………………………………… 70


Chapter 7. Water soluble graphene oxide/poly (1-vinylimidazole) composites: Synthesis and characterization ………………………………………………………………………….. 75
7.1. Introduction …………………………………………………………………………….. 76
7.2. Experimental section …………………………………………………………………… 77
7.2.1. Materials ………………………………………………………………………… 77
7.2.2. Preparation and silylation of graphene oxide …………………………………… 77
7.2.3. Graft polymerization of 1-vinylimidazole ………………………………………. 78 1
7.2.4. Characterization techniques …………………………………………………….. 79
7.3. Results and Discussion ………………………………………………………………… 79
7.3.1. Structural investigation of the PVIm/FGO composites ................................................ 80
7.3.2. XPS analysis of the composites …………………………………………………………………………………… 81
7.3.3. Crystalline properties of the FGO and its composites …………………………... 82
7.3.4. HRTEM images of the PVIm/FGO composites ………………………………………………………… 82
7.3.5. Morphology of the nanocomposites …………………………………………….. 83
7.3.6. Thermal stability ………………………………………………………………… 84
7.4. Conclusions …………………………………………………………………………….. 82
7.5. Bibliography ……………………………………………………………………………. 83

Chapter 8. Preparation of highly dispersed gold nanoparticles on organosilane modified graphene nanosheets ……………………………………………….…………………………. 87
8.1. Introduction …………………………………………………………………………….. 88
8.2. Experimental section …………………………………………………………………… 89 1
8.2.1. Materials……………………………………………………………………….. 89
8.2.2. Preparation of GO …………………………………………………………….. 89
8.2.3. Modification of GO with MPTMS ……………………………………………. 89
8.2.4. Synthesis of modified graphene/AuNPs 9composites …………………………. 90
8.2.5. Characterization techniques …………………………………………………... 91
8.3. Results and Discussion ………………………………………………………………… 91
8.3.1. FTIR spectroscopy of GO/MPTMS …………………………………………... 92
8.3.2. XRD pattern of MGO/AUNPs hybrids ……………………………………….. 93
8.3.3. HRTEM micrographs of composites ………………………………………….. 94
8.3.4. Thermal property of the composites …………………………………………... 95
8.4. Conclusions …………………………………………………………………………….. 96
8.5. Bibliography …………………………………………………………………………… 96


Chapter 9. Fabrication of phenanthroline modified graphene nanosheets decorated with palladium nanoparticles ……………………………………………………………………… 99
9.1. Introduction …………………………………………………………………………… 100
9.2. Experimental details …………………………………………………………………... 101
9.2.1. Materials ……………………………………………………………………….. 101
9.2.2. Preparation of graphene oxide …………………………………………………. 101
9.2.3. Noncovalent functionalization using phenanthroline moiety ………………….. 102
9.2.4. In-situ preparation of Pd NPs dispersed graphene …………………………….. 102 1
9.2.5. Characterization techniques …………………………………………………… 103
9.3. Results and Discussion ……………………………………………………………….. 104
9.3.1. FTIR spectra of functionalized GO ……………………………………………………………………… 104
9.3.2. Dispersion of Pd NPs on the surface of the PRGO …………………………… 105
9.3.3. Morphology of the Pd NPs dispersed PRGO ………………………………….. 105
9.3.4. XRD pattern of the Pd NPs dispersed PRGO ………………………………….. 106
9.3.5. Thermal properties of the hybrids ……………………………………………... 107
9.4. Conclusions …………………………………………………………………………… 108
9.5. Bibliography ………………………………………………………………………….. 108


Chapter 10. Fabrication of Conducting Poly (3-thiophene boronic acid)-Grafted Multi-Walled Carbon Nanotubes by Oxidative Polymerization ………………………………… 110
10.1. Introduction …………………………………………………………………………… 111
10.2. Experimental section ………………………………………………………………….. 112
10.2.1. Materials ……………………………………………………………………... 112
10.2.2. Purification of MWNTs ……………………………………………………… 112
10.2.3. Functionalization of MWNTs ………………………………………………. 112
10.2.4. Preparation of MWNTs/Poly (3-thiophene boronic acid) …………………... 113
10.2.5. Characterization techniques ………………………………………………… 113
10.3. Results and Discussion ……………………………………………………………….. 113
10.3.1. FTIR spectroscopy of MWNTs/PTBA composites …………………………. 114
10.3.2. Thermal property of the composites ………………………………………… 115
10.3.3. Morphology of the composites by FESEM and HRTEM analyses …………. 117
10.3.4. HRTEM images ……………………………………………………………… 118
10.3.5. XRD patterns ………………………………………………………………… 119
10.3.6. Electrical conductivity ………………………………………………………. 119
10.4. Conclusions …………………………………………………………………………... 120
10.5. Bibliography ………………………………………………………………………….. 120


Chapter 11. Surface functionalization of multi-walled carbon nanotubes with random copolymer: synthesis and characterization ………………………………………………... 124
11.1. Introduction …………………………………………………………………………… 125
11.2. Experimental section ………………………………………………………………….. 126 1
11.2.1. Materials……………………………………………………………………… 126
11.2.2. Purification of MWNTs ……………………………………………………… 126
11.2.3. Preparation of MWNT–g–(P3OT–co–P3HT) composites …………………... 126
11.2.4. Characterization techniques …………………………………………………. 127
11.3. Results and Discussion ……………………………………………………………….. 128
11.3.1. FTIR spectroscopy of the composites ……………………………………….. 129
11.3.2. XPS spectra of the hybrid ……………………………………………………. 130
11.3.3. Thermal analysis …………………………………………………………….. 132
11.3.4. Morphology of the MWNT–g–(P3OT–co–P3HT) composites ……………... 133
11.3.5. UV-Vis and PL spectra of composites ………………………………………. 135
11.4. Conclusions …………………………………………………………………………… 137
11.5. Bibliography ………………………………………………………………………….. 137

Summary and Outlook ……………………………………………………………………… 141
List of publications …………………………………………………………………………... 142
Degree
Doctor
Appears in Collections:
대학원 > 이미지시스템공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.