PUKYONG

Extraction of Polysaccharide from Achatina fulica Using Compressed Hot Water and Development of Bioactive Polysaccharide Derivatives by Chemical Modification

Metadata Downloads
Alternative Title
압축열수를 이용한 아프리카 왕달팽이 다당류 추출과 화학 수식을 통한 다당류 유도체 개발
Abstract
아프리카 왕달팽이인 Achatina fulica는 점액에 함유되어 있는 뮤코다당류인 acharan sulfate의 생리활성으로 연구가 진행되었으나, 달팽이 본연의 연구는 거의 진행되지 않았다. 더불어 A. fulica는 전기충격을 통해 점액이 수득되고나면 이를 사료로 이용하거나 버려져 가치가 매우 하향되어 있다. 이러한 A. fulica의 가치있는 사용을 위해 청정기술을 이용하여 A. fulica 내의 유용성분을 추출하는 것을 목적으로 본 연구는 수행되었다.
첫 번째 연구에서 다양한 온도의 압축열수(100°C–300°C)를 이용하여 분해하고, Angiotensin I-converting enzyme (ACE) 저해능, acetylcholinesterase (AChE) 저해능 및 항산화능 등의 물리화학적 특성을 분석하였다. 200°C의 압축열수로 처리된 분해물의 ACE 억제능(IC50)은 5.60 µg/mL를 나타내었으며, 300°C의 압축열수로 처리된 분해물은 100 µg/mL의 농도에서 75.88%의 AChE 저해활성을 나타내었고, 250°C의 압축열수로 처리된 분해물은 311.06 ± 0.00 mM Trolox equivalent/g의 ABTS 라디칼 소거능을 나타내었다. 해당 결과는 온도의 변화에 따른 물의 이온곱을 비롯한 다양한 물리적 특성은 A. fulica의 세포를 파괴함으로써 다당류 및 펩타이드를 생산함으로써 발생된 것으로, 생성된 다당류 및 펩타이드는 다양한 물리화학적 활성을 나타내었다.
두 번째 연구에서는 Box-Behnken design 기반의 반응표면곡선법을 이용하여 A. fuica로부터 다당류를 수득하기 위한 최적공정에 대한 연구를 진행하였다. 최적 추출조건은 133.53°C, 용매/용질의 비율은 54.11 mL/g, 그리고 공정시간은 14.95 분으로 결정되었으며, 해당 최적조건을 적용하였을 때 다당류의 회수율은 42.39 ± 0.85%였다. 회수된 다당류의 총 당, 환원당, 단백질 함량은 각각 58.51 ± 0.79%, 6.74 ± 0.17%, 3.0% ± 0.01%로 나타났다. 해당 다당류는 18.00 ± 0.25 mg/g의 GAG와 363.17 ± 17.56 µg/g의 황을 가지고 있음에 따라 단백질에 당이 다량 결합된 당단백질이 함유되어 있는 것으로 예상된다. TLC 및 HPLC를 통한 단량체 분석 결과, 해당 다당류의 단량체는 glucose로 확인되었으며, 평균 분자량이 134.2 kDa로 나타났다. 본 연구에서 확보된 다당류는 ABTS 라디칼 소거능과 총 항산화능이 각각 32.30 ± 0.31%, 584.12 ± 2.10 µg ascorbic acid equivalent/mL로 나타났다.
세 번째 연구는 두 번째 연구에서 확보한 다당류의 생리활성을 증진시키기 위하여 화학수식을 진행함으로써 다당류 유도체를 제조하는 것에 대한 것으로, 적용된 수식방법은 황화(sulfation)와 셀레늄화 (selenylation)이었다. FT-IR결과를 통해 단량체의 수산화기 중 산소에 치환기들이 부착되어 있음을 확인하였다. 황-다당류 유도체는 2 mg/mL의 농도에서 항응혈 활성인 APTT와 TT가 각각 186.33 ± 9.24 s, 41.33 ± 3.21 s로 나타났다. 또한, 수산화기 라디칼 소거능이 72.99 ± 1.85%로 나타났으며, 셀레늄-다당류 유도체는 88.46 ± 0.36%를 나타냄에 따라 원다당류에 비해 다당류 유도체는 생리활성이 향상되었음을 확인하였다.
결론적으로, 본 연구에서는 압축열수 고유의 물리적인 특성으로 적용하는 조건에 따라 나타나는 다양한 반응 중 분해반응에 초점을 맞추어 A. fulica로부터 다당류를 수득하였으며, 화학수식을 통하여 다당류 유도체를 제조함으로써 이의 생리활성을 개선하였다. 해당 다당류 유도체는 증진된 생리활성과 확보된 안전성 결과를 토대로 기능성식품 및 의약품으로의 사용이 가능할 것으로 예상된다.
Achatina fulica, a giant African land snail, was noted for the physiological activity of acharan sulfate contained in its mucus, but the study of A. fulica itself was insufficient. Moreover, A. fulica that died after receiving electric shock to obtain mucus is used as a feed or discarded. For these valuable uses, the green technology process was used to extract valuable materials.
In the first study, A. fulica was decomposed by compressed hot water at various temperatures (100°C–300°C) and characterized its physicochemical properties were characterized such as Angiotensin I-converting enzyme (ACE) inhibitory, Acetylcholinesterase inhibitory, and antioxidant activities. The physical properties of water such as an ionic product changed with increasing temperature produced polysaccharides and peptides by decomposition of the cell structure of A. fulica, indicating various physiological activities. The ACE inhibitory activity represented an IC50 value of 5.60 µg/mL at 200°C; 75.88% of AChE inhibitory activity was determined at 300°C at concentration of 100 µg/mL, and ABTS radical scavenging activity was 311.06 ± 0.00 mM Trolox equivalent/g at 250°C.
In the second study, the extraction process of polysaccharide from A. fulica was optimized by response surface methodology. The optimized condition was temperature of 133.53°C, water to solid ratio of 54.11 mL/g, and time of 14.95 min, and the yield of the polysaccharide was 42.39 ± 0.85%. The carbohydrates, reducing sugar and protein content in polysaccharides were identified as 58.51 ± 0.79%, 6.74 ± 0.17%, and 3.0% ± 0.01%, respectively, while sulfate content was 363.17 ± 17.56 µg/g. The monomer that comprises polysaccharides through TLC and HPLC was identified as glucose, and the mean molecular weight (Mw) of polysaccharide extract through GPC was 134.2 kDa. The snail polysaccharides (SP) also demonstrated its antioxidant activity by ABTS+ assay and total antioxidant activity of 32.30 ± 0.31% and 584.12 ± 2.10 µg ascorbic acid equivalent/mL.
In the third study, the chemical modification was performed for the production of polysaccharide derivatives to enhance biological activities of polysaccharides and sulfation and selenylation was used as a modification method. Through the FT-IR results, it was verified that the substituents were bound to the oxygen of hydroxyl group in monomer. Sulfated polysaccharide derivatives exhibited APTT and TT to 186.33 ± 9.24 s and 41.33 ± 3.21 s, respectively, as anticoagulant activity and hydroxyl radical scavenging was found to be 72.99 ± 1.85% at a concentration of 2 mg/mL. Selenized polysaccharide showed higher antioxidant and antitumor activity than sulfated polysaccharide as hydroxyl radical scavenging of 88.46 ± 0.36% and IC50 of 52.75 μg/mL for HeLa cell, respectively.
In conclusion, Achatina fulica polysaccharide was obtained by compressed hot water treatment with focusing on decomposition reaction which is one of chemical reactions derived by physical properties with various conditions. Moreover, the chemical modification was performed to produce the polysaccharide derivatives which has been enhanced their bioactivity. The polysaccharide derivatives were verified to have the potential to be used as a functional material for food bio-material industry.
Author(s)
조연진
Issued Date
2020
Awarded Date
2020. 8
Type
Dissertation
Keyword
Compressed hot water Subcritical water Achatina fulica Chemical modification
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2467
http://pknu.dcollection.net/common/orgView/200000339290
Affiliation
부경대학교 대학원
Department
대학원 식품공학과
Advisor
전병수
Table Of Contents
General Introduction 1
Background of snail 1
Snail production and consumption 3
Achatina fulica 4
Compressed hot water (CHW) 9
Objectives of the study 16
Chapter 1 Influence of temperature on decomposition reaction of compressed hot water to valorize Achatina fulica as a functional material 21
1.1. Introduction 21
1.2. Materials and methods 24
1.2.1. Materials 24
1.2.2. Sample preparation 24
1.2.3. Apparatus and experimental procedure 25
1.2.4. Decomposition efficiency 29
1.2.4.1. Water-soluble products (WPs) content 29
1.2.4.2. Severity factor 29
1.2.5. Maillard reaction product determination 30
1.2.6. Color 30
1.2.7. pH 30
1.2.8. Chemical composition 31
1.2.8.1. Total sugar and reducing sugar content 31
1.2.8.2. Protein content 32
1.2.9. Physiological activities 33
1.2.9.1. Antioxidant activities 33
1.2.9.2. Acetylcholinesterase (AChE) inhibition 34
1.2.9.3. Angiotensin-converting enzyme (ACE) inhibition 35
1.2.10. Gel electrophoresis 36
1.2.11. Statistical analysis 36
1.3. Results and discussion 37
1.3.1. Decomposition efficiency 37
1.3.1.1. Water-soluble products yield 37
1.3.1.2. Severity factor 37
1.3.2. Total sugar, reducing sugar and protein content of DPs 40
1.3.3. Color, Maillard reaction product (MRP) and pH of DPs 43
1.3.4. Physiological activities of WPs 46
1.3.4.1. Antioxidant activity 46
1.3.4.2. Acetylcholinesterase (AChE) inhibitory activity 48
1.3.4.3. Angiotensin-Converting Enzyme (ACE) inhibitory activity 50
1.3.5. Molecular size of A. fulica WPs 52
1.4. Conclusion 54
1.5. Reference 55
Chapter 2 Optimization and characterization of polysaccharides extraction from Giant African snail (Achatina fulica) using compressed hot water (CHW) 64
2.1. Introduction 64
2.2. Materials and methods 67
2.2.1. Materials and sample preparation 67
2.2.2. Proximate analysis 67
2.2.3. Compressed hot water extraction (CHWE) 68
2.2.4. Single-factor analysis 68
2.2.5. RSM and data analysis 69
2.2.6. Recovery of SP 71
2.2.7. Preliminary properties 71
2.2.8. GAG, uronic acid, and sulfate content and mono-saccharide composition of SP 71
2.2.9. Molecular weight determination 72
2.2.10. Antioxidant activity 72
2.2.11. Structural analysis of SP 73
2.2.11.1. FTIR spectroscopy 73
2.2.11.2. UV spectroscopy 73
2.2.11.3. Thermal behavior of SP 73
2.2.11.4. Crystallinity 73
2.3. Results and discussion 74
2.3.1. Proximate composition 74
2.3.2. Single-factor analysis for recovery of SP 74
2.3.2.1. Effect of temperature on the yield of SP 74
2.3.2.2. Effect of water to solid ratio on the yield of SP 75
2.3.2.3. Effect of extraction time on the yield of SP 76
2.3.3. Optimization of extraction parameters 79
2.3.4. Preliminary properties 83
2.3.5. Glycosaminoglycan (GAG), uronic acid, and sulfate content and monosaccharide composition of SP 85
2.3.6. Molecular weight determination 89
2.3.7. Antioxidant activity of SP 91
2.3.8. Structural characterization 93
2.4. Conclusion 96
2.5. Reference 97
Chapter 3 Chemical modification of snail polysaccharide and characterization 103
3.1. Introduction 103
3.2. Materials and methods 105
3.2.1. Materials 105
3.2.2. Extraction and purification of snail polysaccharides 105
3.2.3. Chemical modification of snail polysaccharide 106
3.2.3.1. Selenization 106
3.2.3.2. Sulfation 107
3.2.4. Infrared spectroscopy analysis 108
3.2.5. α-amylase inhibitory activity 108
3.2.6. Hydroxyl radical (HO·) scavenging activity 109
3.2.7. Anticoagulant activity 109
3.2.8. Cytotoxicity activity 110
3.2.8.1. Cell lines and culture 110
3.2.8.2. Cell viability assays 110
3.2.9. Statistical analysis 111
3.3. Results and discussion 111
3.3.1. Recovery yield, carbohydrate, and substituent content 111
3.3.2. FT-IR analysis 114
3.3.3. α-amylase inhibitory activity 116
3.3.4. Hydroxyl radical scavenging activity 118
3.3.5. Anticoagulant activity 120
3.3.6. Cytotoxicity activity 123
3.4. Conclusion 125
3.5. Reference 126
Summary 132
요약 134
Degree
Doctor
Appears in Collections:
대학원 > 식품공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.