Generation of genetically engineered piscine rhabdoviruses for a delivery tool of antigens, microRNAs and CRISPR/Cas9
- Alternative Title
- 항원, microRNA 및 CRISPR/Cas9 전달 기능을 지닌 재조합 어류 랍도바이러스 제작
- Abstract
- Reverse genetics is a powerful genetic tool to create an infectious virus from viral cDNA and provide a sight to understand the viral replication and pathogenesis. Also, it is applicable to generate customized viruses, development of live-attenuated vaccines, and gene delivery vehicles. Fish rhabdoviruses can be candidates for the safe delivery of foreign genes without the risk of the integration into host genome. Viral hemorrhagic septicemia virus (VHSV) is an infamous cause of high mortalities in cultured fish at low water temperature. On the other hand, snakehead rhabdovirus (SHRV) belonging to Novirhabdovirus can replicable at high water temperature. In the present study, we genetically engineered VHSV and SHRV to express antigens, microRNAs and CRISPR/Cas9.
MicroRNAs are non-coding small RNAs and participate in the regulation of gene expression through binding to the 3’ untranslated region (UTR) of mRNAs in specific manner. MicroRNA-155 (miR-155) is well known regulator of both innate and adaptive immune response and, in our previous study, miR-155 was significantly increased by VHSV infection in both EPC cells and olive flounder. Through the screening of target genes of miR-155, the protein inhibitor of activated STAT 4a (PIAS4a), which plays an important role in the negative regulation of type I IFN signaling, was found as a target gene of miR-155. We constructed a Tet-on inducible miR-155 vector, and generated EPC cells that are overexpressing miR-155 by doxycycline treatment. Cells overexpressing miR-155 showed a significantly higher type I IFN response after poly I:C stimulation, suggesting miR-155 can act as an antiviral factor of hosts through the up-regulation of type I IFN responses.
The role of miR-30e in fish has been poorly investigated. We predicted that the 3'UTR of NF-κbiαb in EPC cells was targeted by miR-30e, and demonstrated its binding using miR-30e sponge. Furthermore, we inserted primary miR-30e sequence between N and P gene of VHSV genome and verified its expression and functionality. Although VHSV do not enter the nucleus, the successful expression of mature miR-30e was demonstrated by Northern blot and qRT-PCR. Recombinant VHSV expressing miR-30e showed a higher increase of NF-κB activity and the expression of type I interferon induced genes.
Artificial microRNA is an emerging tool of RNA interference (RNAi) to inhibit the expression of target genes, and is based on the natural processes of microRNAs. To control VHSV, an artificial miRNA (amiR-P) was designed to target the phosphoprotein that plays an important role in viral transcription and replication. We demonstrated the efficient interference of target P gene by miRNA mimics and primary microRNA-expressing vectors. Furthermore, we generated an EPC cell line that stably expressing amiR-P and ascertained the inhibitory effect of amiR-P on VHSV replication by qPCR and Western blot. Finally, the amiR-P was inserted between N and P gene of VHSV genome to generate a self-attenuated VHSV, and the newly generated recombinant VHSV (rVHSV-A-amiR-P) was significantly retarded in growth compared to the control virus.
Dicer has an important role in microRNA biogenesis, by which pre-miRNAs are cleaved to produce miRNA duplex. To analyze the effect of genetic ablation of Dicer in EPC cells, we generated Dicer knockout EPC cells using CRISPR-Cas9 system. The genetic ablation of Dicer induced disturbance in miRNAs production and brought on significant low viability and proliferation capacity in cells. Interestingly, Dicer knockout EPC cells showed a considerably higher expression of Mx, IsG15, and IRF7 genes at 24 h post-poly I:C inoculation compared to control cells. On the other hand, those genes expression was not increased at 48 h post treatment, despite control cells showed a significant higher expression. The replication of VHSV and HIRRV in EPC-ΔDicer cells was slightly decreased from those in control EPC cells. The copy number of self-attenuated recombinant VHSV (rVHSV-A-amiR-P) harboring VHSV's P gene targeting artificial microRNA showed increasingly risen up in EPC-ΔDicer cells. These results indicate that Dicer knockout EPC cells can be used to enhance the titer of artificial miRNAs-expressing attenuated recombinant VHSVs.
Interferon regulatory factors (IRFs) play an essential role in controlling IFN expression. To analyze the function of IRF3, IRF5, and IRF7 in EPC cells, each gene knockout EPC cells were generated by CRISPR/Cas9 system. We evaluated the effect on immune response and VHSV replication. In poly I:C stimulation, each knockout cells showed a significantly weakened response in ISRE luciferase reporter assay and showed impaired expression of Mx and IsG15 genes. This result suggests that IRF3, IRF5, and IRF7 play important roles in type I interferon response.
The delivery of heterologous antigens using VHSV can be divided into two ways. The one is the insertion of the heterologous antigen gene between the viral genome, by which antigen is expressed in the cytoplasm after viral infection. The other is the fusion of heterologous antigen genes to the partial or whole structural protein genes of VHSV, which can antigen be displayed on the viral particles. To determine which form can efficiently induce adaptive immunity, we inserted eGFP, eGFP fused with N- and C- terminus sequence of VHSV G, or eGFP fused with C terminus of nucleoprotein between N and P genes of VHSV and rescued the recombinant viruses. The results of ELISA using immunized olive flounder serum showed that antigen fused with nucleoprotein or signal peptide and transmembrane of glycoprotein induced higher antibodies against eGFP. Consequently, delivery of heterologous antigens fused with structural protein of VHSV induced higher immunogenicity.
As SHRV is replicable at high water temperature range, it can be possibly used to deliver foreign proteins to fish living in high water temperature. Therefore, we generated foreign protein (eGFP) expressing recombinant SHRVs and confirmed the expression in infected cells. Using these fluorescent reportable recombinant SHRVs, we confirmed the proliferation of SHRV in HeLa, BHK-21 and Sf-9 cells. Moreover, we generated Cas9 or smallest Cas9 orthologous (CjCas9) and its sgRNA expressing recombinant SHRV to test the possibility of genome editing.
Reverse genetics는 감염성 있는 바이러스를 cDNA를 통해 제작하는 유전 기술로 이를 이용하여 바이러스의 증식 및 병원성을 이해하는 연구를 수행할 수 있을 뿐만 아니라 목적에 맞게 바이러스를 조작하여 약독화 백신 개발 및 유전자 전달 운반체와 같은 응용 연구로 그 범위를 확장할 수 있다. 따라서 본 연구에서는 저온 및 고온에서 증식할 수 있는 어류 랍도바이러스를 이용하여 항원, microRNA 및 CRISPR/Cas9을 발현하는 platform을 구축하기 위한 연구를 수행하였으며, 나아가 각 flatform의 genetic elements 들에 대한 분자 세포학적 메커니즘에 대한 연구를 수행하였다.
MicroRNAs (miRNAs)는 non-coding small RNAs로 상보적 염기서열을 가지는 mRNA의 3'UTR 부분에 결합하여 유전자 발현 조절 등의 기능을 하며 수 천 종류 이상의 miRNA가 밝혀져 있다. 그중 특히, miR-155는 포유동물에서 선천성 면역과 후천성 면역을 모두 조절하는 인자로 알려져 있으나, 어류에서는 넙치와 EPC 세포에서 VHSV 감염 시 증가를 보이는 선행연구 이외에 관련된 정확한 mechanism에 대한 이해가 부족하다. 따라서 본 연구에서는 miR-155가 type I interferon (IFN)에 미치는 영향을 분석하기 위해 표적 유전자 알고리즘으로 protein inhibitor of activated STAT 4a (PIAS4a)의 3' UTR에 결합하는 것을 확인하였으며, dual luciferase assay를 통해 in vitro 상에서 증명하였다. 또한 Tet-on system을 이용하여 doxycycline에 의해 miR-155가 유도되는 EPC 세포를 제작하였으며, 이 세포에 miR-155의 발현을 유도하고 poly I:C 자극 시 높은 type I interferon 반응이 나타남을 확인하였다. 이와 같은 결과로 miR-155가 Type I IFN 반응을 향상시키고 항바이러스 인자로 작용하는 것으로 판단된다.
miR-30e의 기능 분석을 위해 실시한 표적 유전자 예측으로 NF-κbiαb 가 음성 조절됨을 dual luciferase assay를 통해 확인하였다. 또한 miRNA를 재조합 VHSV를 이용하여 전달하기 위해 바이러스의 genome 상에 primary miR-30e를 삽입하여 발현과 기능을 분석하였다. VHSV를 통해 성공적으로 mature miR-30e가 생성됨을 Northern blot 및 qRT-PCR로 확인하였으며, 나아가 miR-30e를 발현하는 재조합 VHSV가 NF-κb 활성 및 type I IFN induced genes의 발현을 향상시킴을 확인하였다. 이를 통해 처음으로 어류 랍도바이러스를 이용한 기능성 miRNA 전달이 가능함을 증명하였다.
Artificial microRNA (amiR)는 natural miRNA를 조작하여 표적 유전자의 발현을 억제하는 RNA interference (RNAi) 방법이다. 이를 이용하여, VHSV의 전사 및 증식에 중요한 역할을 하는 phosphoprotein (P) 을 표적으로 하는 amiR-P를 디자인하였고 P gene의 발현을 효과적으로 억제함을 dual luciferase assay 및 semi-quantitative qRT- PCR을 통해 확인하였다. 나아가 amiR-P를 발현하는 EPC 세포를 제작하여 VHSV의 replication이 억제됨을 qPCR과 Western blot을 통해 증명하였다. 또한 amiR-P를 VHSV의 genome 상에 삽입한 약독화 바이러스 (rVHSV-A-amiR-P) 를 제작하였으며, 이 바이러스의 증식이 control virus에 비해 상당히 지연됨을 증명하였다.
Dicer는 pre-miRNA의 loop 구조를 잘라내어 miRNA duplex를 방출하는 역할을 가지는 중요한 생물학적 인자로 CRISPR/Cas9 system을 이용하여 이 유전자가 knockout (KO) 된 EPC cell을 제작하고 생물학적 영향을 분석하였다. Dicer의 기능을 상실한 세포는 miRNA의 생성을 방해 받았으며 세포의 viability와 증식이 감소하였다. 또한 Dicer의 KO이 IFN 반응에 미치는 영향을 관찰하고자 poly I:C 자극 24 h, 48 h 이후 Mx, IsG15 그리고 IRF7 유전자의 발현을 상대 정량으로 분석하였다. 그 결과, 24 h에서는 Dicer KO 세포가 control 세포에 비해 높은 면역 반응을 보였으나, 48 h에서는 증가하지 못하고 역으로 control 세포에서 더 높은 유전자 발현을 관찰하였다. 나아가 선행연구에서 제작된 amiR-P를 발현하는 약독화 재조합 VHSV의 증식이 Dicer KO 세포에서 향상됨을 확인하였으며 이러한 결과를 바탕으로 artificial miRNA 발현 약독화 재조합 바이러스의 titer 증가에 Dicer KO 세포를 활용할 수 있음을 증명하였다.
Interferon regulatory factors (IRFs)는 IFN 반응을 조절하는 중요한 역할을 하며 그중 특히 IRF3, IRF5, IRF7 은 type I IFN 반응에 큰 영향을 주는 것으로 알려져 있다. EPC 세포에서 IRF3, IRF5, IRF7의 역할을 분석하기 위하여 각각이 KO 된 EPC cell을 CRISPR/Cas9을 이용하여 제작하였으며 자극에 대한 면역 반응을 평가하였다. Poly I:C 자극에서 낮은 ISRE luciferase reporter assay 반응을 보였으며, Mx 와 IsG15의 유전자 발현 또한 현저히 감소하였다. 이러한 결과를 바탕으로 IRF3, IRF5, IRF7이 type I IFN 반응에 중요한 key factor로 작용함을 증명하였다.
재조합 어류 랍도바이러스를 이용한 항원의 전달은 바이러스 감염 후 발현하는 형태 또는 바이러스 입자가 항원을 제시하며 감염 후 발현하는 형태로 나눌 수 있으며 이를 통해 host의 후천성 면역 반응을 유도하여 복합 백신으로 응용이 가능하다. 효과적인 획득 면역 유도 전달 방법을 평가하기 위해 eGFP 발현 rVHSV를 제작하였으며, eGFP를 VHSV의 nucleoprotein C terminal 또는 glycoprotein의 N 과 C terminal sequence에 퓨전 한 cassette 삽입하여 바이러스 입자의 항원 제시 및 감염 후 발현하는 형태의 재조합 VHSV를 제작하였다. 재조합 바이러스를 넙치에 접종한 후 혈청을 분리하여 eGFP에 대한 항체가를 Elisa 법으로 측정한 결과, 바이러스의 구조 유전자와 항원을 퓨전 한 재조합 바이러스의 경우 더 높은 면역 원성을 가지는 것을 증명하였다.
SHRV는 높은 온도 범위에서 증식할 수 있는 유일한 novirhabdovirus로 이를 이용 시 고온에서 biomolecule의 전달이 가능한 장점을 가진다. 따라서 reporter 유전자로 eGFP 또는 eGFP와 mCherry 유전자를 SHRV의 genome에 삽입 한 재조합 SHRV를 제작하였고, 이를 고온에서 EPC 세포에 감염 시키고 형광 단백질의 발현 확인을 통해 재조합 SHRV가 biomolecule을 단일 또는 복합으로 발현 시킬 수 있음을 증명하였다. 또한 HeLa, BHK-21 그리고 Sf-9과 같은 포유동물 및 곤충 세포에 SHRV가 감수성이 있음을 형광 발현 재조합 SHRV의 접종을 통해 확인하였다. 나아가 CRISPR/Cas9을 이용한 유전자 편집 도구를 재조합 SHRV를 이용해 전달하여 BHK-21 세포에서 효과적으로 유전자 조작이 가능함을 증명하였다.
이와 같은 연구 결과는 재조합 어류 랍도바이러스가 biomolecule의 전달 및 응용 측면에서 우수한 확장성이 확보될 수 있음을 나타내며, 최신 유전 공학적 기술들과 어류 면역 조절과의 nexus 영역을 새로이 구축하여 수산 질병의 이해 및 제어에 기여할 수 있을 것으로 기대한다.
- Author(s)
- 곽준성
- Issued Date
- 2020
- Awarded Date
- 2020. 8
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/2469
http://pknu.dcollection.net/common/orgView/200000339512
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 수산생명의학과
- Advisor
- 김기홍
- Table Of Contents
- General Introduction 1
Chapter I. Effect of miR-155 on type I interferon response in Epithelioma papulosum cyprini cells 5
1. Introduction 6
2. Materials and methods 8
2.1. Cells 8
2.2. Construction of a dual luciferase vector containing 3'-UTR sequence of PIAS4a 8
2.3. Effect of miR-155 mimics on the luciferase activity of pmirGLO-PIAS4a 8
2.4. Generation of EPC cells harboring doxycycline inducible miR-155 expression system 9
2.5. Construction pISRE-dual-Luc vector for measuring interferon signaling 10
2.6. Statistical analysis 11
3. Results 13
3.1. miR-155 targets PIAS4a in EPC cells 13
3.2. Establishment of an EPC cell line expressing miR-155 by doxycycline 15
3.3. Overexpression of miR-155 enhanced poly I:C-induced Type I interferon 17
4. Discussion 19
Chapter II. Generation of microRNA-30e-producing recombinant viral hemorrhagic septicemia virus (VHSV) and its effect on in vitro immune responses 21
1. Introduction 22
2. Materials and methods 24
2.1. Cells and virus 24
2.2. Construction of vectors for primary miRNA-30e expression and miR-30e sponge 24
2.3. Construction of primary miRNA-30e expressing vector and quantitation of miR-30e 25
2.4. Construction of miR-30e vectors targeting the 3′-UTR of NF-κb inhibitor α-like protein B 26
2.5. Generation of miR-30e expressing recombinant VHSV (rVHSV-A-miR30e) 27
2.6. Verification of miR-30e production by rVHSV-A-miR30e using Northern blot and qRT-PCR 29
2.7. Effect of rVHSV-A-miR30e infection on NF-κB activity and the expression of IFN-α, Mx1, and ISG15 in EPC cells 30
2.8. Statistical analysis 30
3. Results 32
3.1. Verification of functional miR-30e production by primary miRNA-30e expressing vector 32
3.2. NFκbiαb as a target of miR-30e 34
3.3. Generation of miR-30e expressing recombinant VHSV 36
3.4. Functional analysis of rVHSV-A-miR30e in vitro 39
4. Discussion 41
Chapter III. Attenuation of viral hemorrhagic septicemia virus (VHSV) by insertion of viral structural gene-targeting artificial microRNA into viral genome 43
1. Introduction 44
2. Materials and methods 46
2.1. Cell and viruses 46
2.2. Suppression of VHSV P gene using artificial miRNA mimics 46
2.3. Generation of artificial miRNA expressing EPC cell line 47
2.4. RNAi effect by vector-derived artificial miRNA 48
2.5. Effect of artificial miRNA expression on VHSV replication 48
2.6. Effect of artificial miRNA expression on VHSV proteins level 49
2.7. Generation of amiRNA-expressing recombinant VHSVs 50
2.8. Viral titer and growth 50
2.9. Statistical analysis 51
3. Results 54
3.1. Inhibition of VHSV P gene expression by P gene-targeting artificial miRNA mimics 54
3.2. Inhibition of VHSV P gene expression by P gene-targeting artificial miRNA vector 55
3.3. Cloning of cells expressing artificial miRNA 57
3.4. Inhibitory effect of a P gene-targeting amiRNA on VHSV replication 58
3.5. Effect of a P gene-targeting amiRNA on the expression of VHSV structural proteins 59
3.6. Generation of amiRNA expressing recombinant VHSVs and their growth in EPC cells 60
4. Discussion 61
Chapter Ⅳ. Effect of Dicer knockout in EPC cells on the production of mature microRNAs and the replication of an artificial microRNA-expressing recombinant VHSV 63
1. Introduction 64
2. Materials and methods 66
2.1. Cells and virus 66
2.2. Generation of Dicer knockout EPC cells 66
2.3. Verification of Dicer Knockout by Western blot 67
2.4. Effect of Dicer gene knockout on cell viability and proliferation 68
2.5. Effect of Dicer gene knockout on miRNAs expression 68
2.6. Expression of Mx1, IsG15, and IRF7 in EPC-ΔDicer cells by poly I:C stimulation 69
2.7. Ablation of Dicer on VHSV and HIRRV replication 69
2.8. Effect of Dicer ablation on the replication of rVHSV-A-amiR-P 70
2.9. Statistical analysis 70
3. Results 72
3.1. Ablation of Dicer in EPC cells 72
3.2. Ablation of Dicer negatively affects on cell proliferation and viability 74
3.3. Expression of miRNAs in Dicer knockout EPC cells 75
3.4. Type I interferon response in Dicer-deficient EPC cells 76
3.5. VHSV and HIRRV replication in Dicer-deficient EPC cells 77
3.6. Effect of Dicer knockout on the replication of VHSV’s P gene targeting artificial miRNA expressing recombinant VHSV 78
4. Discussion 79
Chapter Ⅴ. CRISPR/Cas9-mediated knockout of IRF3, 5 and 7 genes in EPC cells and effect of the knockout on cell's immune responses and VHSV replication 83
1. Introduction 84
2. Materials and methods 86
2.1. Cells and electroporation optimization 86
2.2. IRF3, IRF5, IRF7 gene prediction and cloning 86
2.3. Construction of SpCas9 and sgRNA expressing vector 87
2.4. Generation of IRF3, IRF5, and IRF7 knockout cells 88
2.5. Dual-luciferase assay 88
2.6. Analysis of the IFN stimulated genes (ISGs) expression 89
2.7. Effect of IRF3, IRF5, or IRF7 knockout on VHSV replication 90
2.8. Statistical analysis 90
3. Results 92
3.1. Optimization of Electroporation for EPC cells 92
3.2. Sequence of IRF3, IRF5, and IRF7 in the genomic DNA 94
3.3. Construction of SpCas9 and sgRNA expressing vector 96
3.4. Single cell cloning and verification of insertion or deletion by gel electrophoresis 97
3.5. NF-kB activity in ΔIRF3, ΔIRF5, and ΔIRF7 EPC cells 103
3.6. Impaired induction of IFN Response in ΔIRF3, ΔIRF5, and ΔIRF7 EPC cells 104
3.7. Mx1 and ISG15 genes expression in EPC-ΔIRF3, EPC-ΔIRF5, and EPC-ΔIRF7 cells 104
3.8. VHSV replication in EPC-ΔIRF3, EPC-ΔIRF5, and EPC-ΔIRF7 cells 107
4. Discussion 108
Chapter Ⅵ. Enhanced immunogenicity of a reporter protein by expression on viral envelop or fusion to nucleoprotein of viral hemorrhagic septicemia virus (VHSV) 110
1. Introduction 111
2. Materials and methods 113
2.1. Cells 113
2.2. Vectors construction and rescue of recombinant VHSVs 113
2.3. Expression of eGFP in cells infected with each recombinant VHSV 114
2.4. Verification of fusion protein from recombinant virus particles. 115
2.5. Induction of antibody response in olive flounder by immunization with each recombinant VHSV 115
3. Results 118
3.1. Generation of recombinant VHSVs and eGFP expression in infected cells 118
3.2. Verification of fusion protein from recombinant virus particles 122
3.3. Induction of antibody response in olive flounder by immunization with each recombinant VHSV 124
4. Discussion 125
Chapter ⅤII. Generation and application of diverse kinds of recombinant snakehead rhabdoviruses (SHRVs) 127
1. Introduction 128
2. Materials and methods 130
2.1. Cells and viruses 130
2.2. Generation of recombinant wild-type SHRV (rSHRV-wild) 130
2.3. Generation of recombinant SHRVs expressing single or dual reporter proteins (rSHRV-AeGFP and rSHRV-AeGFP-BmCherry) 131
2.4. Generation of chimeric SHRV and VHSV by interchanging of NV gene each other 132
2.5. Measuring the titer of recombinant viruses using plaque assay 133
2.6. Growth of recombinant viruses 133
2.7. The expression of reporter proteins 134
2.8. Susceptibility of mammalian and insect cells to rSHRV-AeGFP 134
2.9. Genomic DNA sequence of IRF9 gene in BHK-21 cells and design of sgRNA 134
2.10. Generation of rSHRV expressing SpCas9 and sgRNA (rSHRV-A-SpIRF9-F-SpCas9) 135
2.11. Generation of rSHRV expressing Cjcas9 and sgRNA (rSHRV-A-CjIRF9-F-CjCas9) 136
2.12. Recombinant SHRV-mediated genome editing in BHK-21 cells 137
3. Results 140
3.1. Generation of recombinant SHRVs 140
3.2. Fluorescence of cells infected with rVHSV-AeGFP and rVHSV-AeGFP-BmCherry 143
3.3. SHRV susceptibility test in non-piscine cells using rSHRV-AeGFP 144
3.4. Interchange of Non virion protein between VHSV and SHRV 145
3.5. Generation of SpCas9 or CjCas9 expressing recombinant SHRV 147
3.6. Cas9 expressing recombinant SHRV edited genomic DNA of BHK-21 cells 148
4. Discussion 149
Abstract 152
Acknowledgment 156
Reference 157
Abbreviations 174
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 수산생명의학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.