아크 플라즈마 기술을 이용한 삼원촉매 표면의 Pt 열화 특성 향상
- Alternative Title
- Development of thermally stable Pt nano-particles by Arc Plasma deposition method and Quantum chemical calculatio
- Abstract
- The objectives of this study are to develop highly dispersed Pt nanoparticles by pulsed Arc plasma deposition (APD) method and to select anchoring materials through quantum chemical calculation (QCC) approach.
Arc Plasma deposition method was used to deposit Pt nanoparticles onto gamma alumina based powders from a Pt metal cathode. Deposited Pt nanoparticles exhibited a higher dispersion and thus showed higher catalytic activity for NOx, CO and HC conversion, compared to conventional Pt/Al2O3 catalyst prepared by the impregnation method. Through the first principle calculations Fe and Mn metal aluminate were selected as anchoring materials by considering the lattice constant, surface energy, interfacial energy, wetting angle and adhesion and VASP(Vienna Abinitio Simulation Package) was used as a calculation package. The Fe and Mn aluminate catalysts were prepared by co-gelation precipitation precipitation and impregnation methods indicated the absence of spinel structure. The samples prepared by APD using Pt and Fe targets over alumina support in the presence of oxygen showed better dispersion and hgih thermal stability. Further QCC modeling of electron energy level of PtO2/CeO2, PtO2/Al2O3, PtO2/TiO2 and PtO2/ZrO2 results revealed that the PtO2/CeO2 showed the lowest (-6.645 eV) energy level followed by PtO2/Al2O3 than the others. On the basis of these QCC results, CeO2-Al2O3 support was selected for sample preparation by deposition precipitation and co-precipitation methods. Pt deposited by APD over CeO2-Al2O3 which was prepared by co-precipitation attributed fine dispersion of Pt and PtO2 with high thermal stability. The catalysts were comprehensively characterized by BET-SA(Brunauer Emmett Teller-Surface Area), TEM(transmission electron microscopy), XPS(X-ray Photoelectron Spectroscopy), H2-TPR(temperature programmed reduction) and NO-TPD(temperature programmed desorption) with QMS(Qaudrupole Mass Spectrometer). Thermal stability at 950ºC for 3h under 1% O2 of Pt deposited CeO2-Al2O3 catalysts showed high sintering stability confirmed by TEM images. This may be due to the anchoring effect of CeO2. Moerover, the Pt/CeO2-Al2O3 catalysts showed higher catalytic activity for NOx, CO and HC conversion at low temperature.
- Author(s)
- 정영은
- Issued Date
- 2013
- Awarded Date
- 2013. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/24893
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001966272
- Alternative Author(s)
- Young Eun, Jeong
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 재료공학과
- Advisor
- 최희락
- Table Of Contents
- 1. 서론
2. 이론적 배경
2.1 배기가스의 특성
2.1.1 질소산화물의 특성
2.1.2 NOx의 발생원
2.2 EU EURO
2.3 배기가스 내의 NOx 저감기술
2.3.1 배연탈질기술-연소 전 처리 방법 2.3.2 배연탈질기술-연소 후 처리방법
2.4 삼원촉매
2.4.1 삼원촉매의 시스템 및 작동원리
2.4.2 삼원촉매의 반응기구
2.4.3 삼원촉매의 특성
2.4.4 삼원촉매의 비활성화
3. 촉매 제조 및 특성 분석
3.1 촉매제조 종류와 방법
3.1.1 함침법
3.1.2 이온교환법
3.1.3 침전법
3.1.4 Arc Plasma Deposition(APD)Process
3.2 담체 설계
3.2.1 백금-산화물 간 계면특성(계면에너지, 접촉각)의 제일원리 계산
3.2.2 담체와 Pt 간의 계면특성(Energy level)의 제일원리 계산
3.3 촉매 제조
3.3.1 지지체
3.3.2 Pt담지
3.4 촉매 특성 및 활성
3.4.1 BET/BJH
3.4.2 XPS
3.4.3 XRD
3.4.4 TEM/EDS
3.4.5 TPD/TPR
3.4.6 QMS
3.4.7 삼원촉매(Three way catalyst) 고정층반응기
4. 결과 및 고찰
4.1 백금 담지 방법에 따른 촉매 특성 : Pt/Al2O3
4.1.1 BJH
4.1.2 TEM/EDS
4.1.3 XPS
4.1.4 H2-TPR
4.1.5 NO-TPD
4.2 담체설계 계산 결과
4.2.1 백금-산화물 간 계면특성의 제일원리 계산
4.2.2 Support 물질과 Pt간의 energy level을 통한 담체설계
4.3 가속 열화
4.3.1 Pt 담지 방법에 따른 가속열화
4.3.2 담체설계를 통해 제조한 촉매의 가속열화
4.4 Three way catalytic activity(촉매 제조법에 따른 촉매활성)
5. 결론
참고문헌
- Degree
- Master
-
Appears in Collections:
- 대학원 > 재료공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.