PUKYONG

낮은 상호상관관계를 갖는 비선형 이진수열의 생성

Metadata Downloads
Abstract
Spreading sequence is used for spreading spectrum in CDMA. For the purpose of minimizing multiple access interference and expanding the number of the users, it is desirable to use such sequences with low cross-correlation and high linear span. To make the family size larger and the linear span higher, it is inevitable to raise the cross-correlation function value. In the transmission performance and efficiency, an important problem is to find the spectrum and the number of the occurrences of the cross-correlation function values between two different maximal sequences. In this paper, we propose the new maximal sequences which are obtained by the new decimations d= {2^{m-st-1}}/{2^s -1}(2^{n}+2^{st+s+1}-2^{m+st+1}-1 ),d= 2^{m-1}/{2^{s} -1} ( 2^{m (i+1)}-2 ^{mi} +2 ^{s+1}-2^m-1) from some maximal sequences. We will also find the spectrum and the number of the occurrences of the cross-correlation function value from the proposed decimations. Also we propose the new family of the sequences using the decimation which satisfies the condition d =1(mod2^m-1), calculate the cross-correlation spectrum for 0≤t≤2^n−2 and count the number of the whole value occurring for 0≤tau≤2^n-2. For the decimation d=2・2^m-1 we count the number of the cross-correlation function value C_d (tau) =2^m-1 occurring for 0≤t≤2^n−2, for d=2^{m-1} (3·2^{m}-1) we resolve the number of the cross-correlation function value around (). Finally, for the decimation with the condition d==1(mod2^m-1), d==2^k( mod 2^m+1), we analyze the cross-correlation spectrum and the number of the occurrences for tau =Q tau_1, (0 ≤tau_1≤2^m-2). The work on this paper can make it easier to count the number of the occurrence of the cross-correlation function value.
Author(s)
권민정
Issued Date
2013
Awarded Date
2013. 8
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/25460
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001966533
Affiliation
대학원
Department
대학원 응용수학과
Advisor
조성진
Table Of Contents
Abstract ⅲ


1. 서론 1
2. 배경 지식
2.1. 트레이스 함수 3
2.2. 상호상관함수 4
2.3. 데시메이션 6
2.4. 선형다항식 8
2.5. 집합 S의 성질 11
2.6. 기존연구 12
3. Niho 타입의 새로운 데시메이션
3.1.d= {2^{m-st-1}}/{2^s -1}(2^{n}+2^{st+s+1}-2^{m+st+1}-1 ) 16
3.2.d= 2^{m-1}/{2^{s} -1} (2^{m( i+1)}-2^{mi}+2^{s+1}-2^m-1) 26
4. 새로운 수열의 상호상관 함수
4.1. 새로운 비선형 이진수열의 생성 32
4.2. d=2・2^m-1일 때 새로운 수열의 상호상관 함숫값 33
4.3. d=2^{m-1}(3・2^m-1)일 때 새로운 수열의 상호상관 함숫값 41
4.4. d==1(mod2^{m}-1),d==2^{k}(mod2^m+1)일 때 새로운 수열의 상호상관 함숫값 48
5. 결론 67
참고문헌 68
감사의 글 71
Degree
Doctor
Appears in Collections:
대학원 > 응용수학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.