Applications of Green Extraction Technologies: Characterization of Lipids and Amino Acids from Conger Eel (Conger myriaster) Using Sub and Supercritical Fluids
- Alternative Title
- 친환경 추출 기술인 아임계 및 초임계 유체를 이용한 붕장어(Conger myriaster) 유래 지질 및 아미노산 특성 연구
- Abstract
- 붕장어 (Conger myriaster)는 ω-3 PUFAs, 지용성 비타민 및 인지질을 비롯한 지질류뿐만 아니라, 높은 함량의 단백질로 인해 식품산업에서 다양한 응용분야를 확대할 수 있다. 본 연구에서는 C. myriaster의 다양한 부위를 식품 및 기능성 소재로 활용하기 위해 아임계 및 초임계 유체 추출을 적용하여 물리화학적 특성 및 생리활성을 조사하였다. 이를 통해 식품, 기능성 물질, 의약품 등에 활용할 수 있는 1차 데이터 확보를 목표로 한다.
첫번째 연구에서는 초임계 이산화탄소(Supercritical carbon dioxide; SC-CO2)와 유기용매를 이용하여 C. myriaster에서 oil 추출 및 그 특성을 파악하였다. SC-CO2 추출 조건은 압력 (25, 30 MPa) 및 온도 (45, 55℃)로 다양하게 수행하였으며, SC-CO2의 유속은 추출 동안 일정하게(27 g/min) 유지되었으며, 유기용매 추출은 헥산(n-Hexane)을 이용하였다. 최적 추출 조건은55℃, 30 MPa에서 37.73±0.14%로 가장 높은 수율을 나타내었다. Gas chromatography를 사용하여 지방산 조성을 평가하였으며, 주요 지방산은 mystric acid, palmitoleic acid, oleic acid, eicosapetaenoic acid (EPA) 및 docosahexaenoic acid (DHA)로 확인되었다. 추출된 C. myriaster oil의 산화안정성은 산가, 과산화물가 및 유리지방산을 측정하여 평가하였다. 그 결과, SC-CO2 조건 55℃, 30 MPa로 추출한 오일에서 최상의 산화 안정성을 보이는 것으로 확인하였다. SC-CO2 추출 C. myriaster oil과 유기용매 추출 C. myriaster oil의 색상 특성에도 유의한 차이가 있었으며, SC-CO2 추출 C. myriaster oil의 색도가 더 우수한 것으로 나타났다. SC-CO2를 사용하여 C. myriaster에서 oil을 추출하면 유기용매를 사용하는 것보다 더 나은 경제적 이점을 가져올 수 있으며, 친환경적으로 oil을 추출하는 방식임을 확인하였다.
두 번째 연구에서는 청정추출공정인 SC-CO2와 아임계 수를 사용하여 장어 껍질(C. myriaster skin; CMS)의 고부가가치화를 위한 연구를 진행하였다. SC-CO2로 추출한 CMS oil의 ω-3 PUFAs의 함량은18.62±0.08%, 지용성 비타민 vitamin A, D, E, 및 K2의 함량은 각각 467.38±0.46 μg/100 g, 8.31±0.02 mg/100 g, 143.42±4.61mg/100 g 및 1.27±0.05 mg/100 g으로 확인되었다. 오일이 제거된 CMS는 160~280℃ 범위의 온도에서 아임계 수를 이용하여 가수분해되었다. 총 단백질, 총 당 및 마이야르 반응 생성물의 함량은 190℃에서 409.31±2.86 mg BSA/g, 280℃에서 8.31±0.31 mg Glucose/g 및 220℃에서 0.240±0.003 (Abs 420 nm)로 관찰되었으며, 가장 높은 항산화 활성은 280℃에서 나타났다. 또한, 풍부한 유리 아미노산이 가수분해물에 있는 것을 확인하였다. 초임계 및 아임계 유체를 사용하여 CMS로부터 oil 및 아미노산의 추출은 기능성 소재를 수득하는데 효과적이고 경제적인 방법이 되는 것을 나타낸다.
세 번째 연구에서는 ω-3 PUFAs 함량이 높은 해양 인지질(Phospholipids; PLs)은 최근 연구자와 소비자들 사이에서 각광을 받았으며, 약리학적 역할을 위한 우수한 화합물이 될 가능성이 있다고 판단하여, 에탄올을 공용매로 하는 SC-CO2 및 유기용매(hexane-ethanol)를 사용하여 C. myriaster head (CMH)로부터 PLs를 추출하고 그 특성을 평가하는 것이다. 추출된 CMH의 lipids류의 특성을 평가하기 위해 인지질의 순도, 31P NMR을 이용한 개별 인지질 화합물의 정성 및정량, 열적 특성(DSC 및 TGA), 지방산 조성, 지용성 비타민 햠랑을 분석하였다. 에탄올을 공용매로 하여 SC-CO2를 사용하여 추출한 CMH PLs의 주요 인지질은 포스파티딜콜린(Phosphatidylcholine; PC)이고, 493.897 μmol/oil (88.88%)이였고 그 뒤로 포스파티딜에탄올아민 (Phosphatidylethanolamine; PE)과 포스파티딜세린(Phosphatidylserine; PS)이 그 뒤를 이었다. 지방산 조성의 경우 유기용매를 사용하여 추출한 CMH PLs의 경우 19.12%, 에탄올을 공용매로 하여 SC-CO2로 추출한 CMH PLs가 29.45%의 ω-3 PUFAs함량을 나타내어 해양 인지질이 매우 우수한 자원이라는 사실을 확인할 수 있었다. 열분석(DSC 및 TGA)를 통해 인지질이 매우 다양한 성분으로 구성되어 있는 것을 확인할 수 있었다. 비타민 A의 경우 비극성 용매(SC-CO2 혹은 hexane)을 사용하여 추출한 오일에 많이 함유되어 있으며, 양친매성 물질인 인지질에서는 그 함량이 매우 적은 것으로 나타났다. 결론적으로, 에탄올을 공용매로 하는 SC-CO2는 친환경적인 방법으로 CMH로부터 PLs를 효과적으로 추출, 분리할 수 있는 것을 확인할 수 있다.
Conger myriaster, a conger eel, has a high concentration of lipids, including ω-3 PUFAs, fat-soluble vitamins, and phospholipids, as well as proteins, which may expand its usage in the food industry. In this study, sub- and supercritical fluid extraction was employed to utilize various parts of C. myriaster as food and functional materials, and the physicochemical properties and physiological activities were investigated. Through this, it aims to secure primary data that can be used for food, functional material, and pharmaceutical material.
Extraction of C. myriaster oil using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated in the first study. The extraction conditions involved the use of SC-CO2 at various pressures (25 and 30 MPa) and temperatures (45°C and 55℃), while the SC-CO2 flow rate was kept constant throughout the experiment (27 g/min) and hexane was used as a conventional organic solvent. The highest yield of 37.73% ± 0.4% was obtained under optimum extraction conditions, which involved the use of SC-CO2 at 55°C and 30 MPa. The fatty acids (FAs) in the oil obtained were characterized using gas chromatography. It was revealed that the major FAs detected were mystric acid, palmitoleic acid, oleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free FA level. The SC-CO2 extracted oil demonstrated the best oxidative stability at 30 MPa and 55℃. There was a significant difference in color properties of the SC-CO2 and hexane-extracted oils. SC-CO2 extracted oil showed better chromaticity than the hexane-extracted oil. Extracting oils from C. myriaster using SC-CO2 can offer better economic benefits than organic solvents. When SC-CO2 is used, there is no post-treatment process. Hence, it was confirmed that this is a more environmentally friendly oil extraction method.
In the second study, Conger myriaster skin (CMS) was extracted using green extraction methodologies that utilized supercritical carbon dioxide (SC-CO2) and subcritical water. The ω-3 fatty acid content in CMS oil extracted using SC-CO2 was 18.62 ± 0.08%, and vitamin A, D, E, and K2 contents were 467.38 ± 0.46 μg/100 g, 8.31 ± 0.02 mg/100 g, 143.42 ± 4.61 mg/100 g, and 1.27 ± 0.05 mg/100 g, respectively. De-oiled CMS was hydrolyzed using subcritical water at temperatures ranging from 160°C to 280°C. Total protein, total sugar, and Maillard reaction product contents have reached maximum values of 409.31 ± 2.86 mg bovine serum albumin (BSA)/g at 190°C, 8.31 ± 0.31 mg glucose/g at 280°C, and 0.240 ± 0.003 (Abs420 nm) at 220°C, respectively. The highest antioxidant activity was observed at 280℃. Free amino acids were abundant in the hydrolysates. Oil extraction from CMS using supercritical and subcritical fluids represents an effective and economical source of functional materials.
Marine phospholipids, which are high in omega-3 polyunsaturated FAs (ω-3 PUFAs), have recently garnered the interest of researchers and consumers given their potential as remarkable compounds for pharmacological roles. The purpose of the third study was to evaluate C. myriaster head (CMH) PLs extracted using SC-CO2 with ethanol as a co-solvent and an organic solvent of hexane-ethanol. To evaluate the characteristics of the extracted CMH lipids, purity of phospholipid, qualitative and quantitative composition of individual phospholipid composition using 31P NMR, thermal characterization (DSC and TGA), and the composition of FAs and fat-soluble vitamins were analyzed. The major phospholipid extracted using SC-CO2 and ethanol was phosphatidylcholine containing 493.897 μmol/g of CMH oil (88.88%), followed by phosphatidylethanolamine and phosphatidylserine. Phospholipids extracted from CMH using organic solvents had 19.12% ω-3 PUFAs, and SC-CO2 with ethanol as co-solvent had 29.45% ω-3 PUFAs, indicating that marine phospholipids have better than phospholipids from terrestrial sources. Thermal analyses (DSC and TGA) show that phospholipids are composed of various components. Vitamin A was present in oils using non-polar solvents (or SC-CO2), and its content was very small in amphiphilic phospholipids. SC-CO2 with ethanol as co-solvent, which is an eco-friendly method, can effectively isolate PLs from CMH.
- Author(s)
- 박진석
- Issued Date
- 2022
- Awarded Date
- 2022. 8
- Type
- Dissertation
- Keyword
- 붕장어 초임계 아임계 청정공정 지질류 아미노산
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/32652
http://pknu.dcollection.net/common/orgView/200000643513
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 식품공학과
- Advisor
- 전병수
- Table Of Contents
- Chapter 1 General Introduction 1
1.1. Background of conger eel 1
1.2. Supercritical fluid technology 8
1.3. Subcritical water 16
1.3.1. Subcritical water hydrolysis 20
1.3.2. Research trends of subcritical water hydrolysis 22
1.4. Polyunsaturated fatty acids 23
1.5. Fat-soluble vitamins 26
1.6. Phospholipids 29
1.7. Heavy metals 32
1.8. Objectives of the thesis 35
References 37
Chapter 2 Quality properties of conger eel (Conger myriaster) oils extracted by supercritical carbon dioxide and conventional methods 51
Abstract 51
2.1. Introduction 53
2.2. Materials and methods 55
2.2.1. Materials and chemicals 55
2.2.2. Analysis of proximate compositions 56
2.2.3. Supercritical carbon dioxide (SC-CO2) extraction 56
2.2.4. Solvent extraction 59
2.2.5. Analysis of fatty acids composition 59
2.2.6. Oil stability 62
2.2.7. Color 64
2.2.8. Statistical analysis 64
2.3. Results and Discussion 65
2.3.1. Comparison of yield 65
2.3.2. Proximate composition 69
2.3.3. FAs composition of oils 71
2.3.4. Oil stability analysis 73
2.3.5. Color of the oils 77
2.4. Conclusion 79
References 80
Chapter 3 Extraction of edible oils and amino acids from conger eel by-products using clean compressed solvents: An approach of complete valorization 87
Abstract 87
3.1. Introduction 88
3.2. Materials and methods 90
3.2.1. Materials and chemicals 90
3.2.2. SC-CO2, solvent, and cold press extractions 91
3.2.3. Subcritical water hydrolysis of de-oiled powder 91
3.2.4. Oil quality assessment 92
3.2.4.1. Color 92
3.2.4.2. FAs composition 93
3.2.4.3. Fat-soluble vitamins 95
3.2.4.4. Heavy metal contents 97
3.2.5. Physicochemical analysis of CSH 97
3.2.5.1. Color, pH, and Maillard reaction product measurements 97
3.2.5.2. Total sugar and total protein contents 98
3.2.5.3. Amino acid analysis 99
3.2.5.4. Antioxidant activity 99
3.2.6. Statistical analysis 100
3.3. Results and Discussion 100
3.3.1. Proximate composition of CMS 100
3.3.2. Color of the CMS oils 102
3.3.3. FAs composition CMS oils 105
3.3.4. Fat-soluble vitamins of CMS oils 107
3.3.5. Heavy metal contents in the extracted CMS oils 112
3.3.6. Hydrolysis efficiency of de-oiled by-products 115
3.3.7. Color and pH of CSH 115
3.3.8. Total protein, total sugar, and MRPs of CSH 119
3.3.9. Antioxidant activity of CSH 120
3.3.10. Total and free amino acid content of the de-oiled by-products and hydrolysates 123
3.4. Conclusion 125
References 126
Chapter 4 Characterization of phospholipids extracted conger eel head using supercritical CO2 with ethanol as co-solvent 134
Abstract 134
4.1. Introduction 136
4.2. Materials and methods 140
4.2.1. Materials and chemicals 140
4.2.2. Proximate composition 140
4.2.3. Extraction of PLs by SC-CO2 with ethanol as co-solvent 141
4.2.4. Extraction of PLs by organic solvent 144
4.2.5. Measurement of yield and purity of extracted PLs 145
4.2.6. PLs quantification by 31P NMR 146
4.2.7. FAscomposition by GC-FID 147
4.2.8. Thermal behavior 150
4.2.8.1. Thermal gravimetric analysis (TGA) 150
4.2.8.2. Differential scanning calorimetry (DSC) 150
4.2.9. Fat-soluble vitamins (Retinol) 151
4.3. Results and discussion 154
4.3.1. Proximate composition of CMH 154
4.3.2. Yield and purity content of PLs 156
4.3.3. PLs composition by 31P NMR 159
4.3.4. FAs composition 164
4.3.5. Differential scanning calorimeter 167
4.3.6. Thermogravimetric analysis 172
4.3.7. Vitamin A (Retinol) 177
4.4. Conclusion 179
References 180
Summary 190
Abstract (In Korean) 192
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 식품공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.