광물탄산화 공정이 제강슬래그의 비소 제거 기작에 미치는 영향
- Alternative Title
- The effect of mineral carbonation process on the arsenic removal mechanism of steelmaking slag
- Abstract
- 본 연구에서는 제강슬래그의 광물탄산화 공정 이후 발생하는 잔사슬래그(residual slag)의 비소 제거 기작을 규명하고 비소 오염 지하수 및 토양으로부터 비소를 제거하는 물질로서 활용가능성을 평가하는 실험실 규모의 배치실험을 수행하였다. 기존의 BOF 제강슬래그 (basic oxygen furnace slag, 이하 “BOF”; CaO: 38.3 wt.%, Fe2O3: 20.3 wt.%)에 직접 수성 탄산화 (direct aqueous carbonation) 또는 간접 탄산화 (indirect carbonation) 공정을 각각 적용하여 제조한, 두 종류의 잔사슬래그(RDBOF 와 RIBOF)를 실험에 사용하였다. 각 잔사슬래그의 물리화학적 특성 분석 결과, RDBOF 는 직접 탄산화 공정 동안에 BOF 내 칼슘 기반 광물이 대부분 탄산칼슘(CaCO3)으로 전환되고, 184.4 g-CO2/kg-slag의 CO2 저장율(전환율 51.4%)을 보였다. 반면 RIBOF는 간접 탄산화 공정 동안 68.5%의 칼슘이 BOF 내부로부터 추출되었기 때문에 BOF와 비교하여 낮은 칼슘 함량(CaO :17.6 wt.%)을 나타내었다. RDBOF와 RIBOF는 각각 24.7 m2/g, 11.7 m2/g의 비표면적과 8.4, 4.5의 PZC 값을 가지는 것으로 나타나, 비소의 표면 흡착 특성은 기존의 BOF (비표면적: 0.7 m2/g, PZC: 8.1)와 상이할 것으로 판단되었다.
잔사슬래그의 비소 흡착/침전 특성을 이해하기 위해 비소 제거 배치실험을 다양한 pH 조건에서 실시하였다. 서로 다른 초기 pH로 적정된 비소 오염수(초기농도 203.6 mg/L) 10 mL와 잔사슬래그 0.1 g을 반응시켰다. 반응 후 상등액의 비소 농도를 ICP/OES로 측정하여 비소 제거효율을 계산하였으며 잔사슬래그의 비소 제거기작을 규명하기 위해 SEM/EDS, TG-DTG, FTIR, 및 XPS 분석을 수행하였다. RDBOF 는 초기 pH 1 (최종 pH 5.96) 조건에서 99.3%의 높은 제거효율을 보였으나, 초기 pH가 증가함에 따라 제거효율이 감소하며 초기 pH가 10 (최종 pH 10.28)인 경우에는 46.5%의 비소가 제거되었다. SEM/EDS 분석 결과 수용액의 초기 pH가 낮은 환경일수록 RDBOF 표면에 피복된 CaCO3의 용해가 촉진되는 동시에, 슬래그 표면에 증가한 철 산화물 노출 면적에 의해 비소 흡착이 가속화된 것으로 판단되었으며, 이는 추가 TG-DTG 및 FTIR 분석 결과에 의해서 뒷받침되었다. 반면 RIBOF의 경우 용액의 초기 pH가 1 (최종 pH 2.05)일 때, 15.5%의 제거효율을 보였지만 용액의 초기 pH가 높아짐에 따라 제거효율이 증가하여 초기 pH 10 (최종 pH 10.00)인 환경에서 70.0%의 비소 제거효율을 나타내었다. RIBOF의 PZC를 고려할 때 중성 이상의 pH 조건에서 RIBOF의 표면은 음으로 대전 되기 때문에 RIBOF 표면에서 철 산화물에 의한 비소 음이온 흡착 기작은 발생하지 않을 것으로 판단되었지만, Ca2+, Mn2+, Fe3+와 같은 2가 또는 3가 양이온의 가교 효과(cation bridge effect)에 의해 음전하를 띠는 RIBOF 표면에 비소 음이온이 흡착될 수 있었다. 초기 pH 13 조건에서는 두 잔사슬래그 모두 낮은 제거효율을 보였는데, 이는 높은 pH 조건 (pH > 11)에서 침전된 칼슘 생성물에 의한 철 산화물의 비소 흡착 방해에서 기인한 것으로 밝혀졌다.
잔사슬래그 표면에 흡착/침전된 비소의 안정성을 평가하고자, 비소 오염수와 반응한 잔사슬래그에 대하여 추가 TCLP 시험이 수행되었다. 시험 결과, RDBOF와 RIBOF로부터 각각 0.01 – 1.39 mg/L, 0.57 – 3.12 mg/L의 비소가 용출되었으나, 비소 탈착률이 2% 이내임을 고려하면 잔사슬래그는 전 pH 영역에서 비교적 안정한 형태로 비소를 고정할 수 있을 것으로 판단되었다.
본 연구를 통해 광물탄산화 공정 이후 발생하는 잔사슬래그는 기존에 비소 제거제로 사용했던 제강슬래그의 단점으로 꼽혔던 pH 증가현상을 억제하면서도 오염수의 초기 pH 조건에 따라 높은 비소 고정 효과를 나타낼 수 있음을 정략적으로 제시함으로써, 비소 제거를 위한 저비용-친환경적인 흡착제나 안정화제로 오염 현장에서 효과적으로 사용될 수 있음을 입증하였다.
Laboratory-scale batch experiments were conducted to investigate the arsenic (As) removal mechanism of the residual slag generated after the mineral carbonation process of the steelmaking slag (SMS) and to assess the utility of residual slag as an As removal for the As-contaminated groundwater and soil. The SMS used in this experiment was BOF slag (basic oxygen furnace slag, call as “BOF” hereafter; CaO: 38.3 wt.%, Fe2O3: 20.3 wt.%), and two types of residual slag (RDBOF and RIBOF) were prepared by applying direct aqueous carbonation (for RDBOF) and indirect carbonation process (for RIBOF) respectively to the BOF. From the result of physicochemical properties of residual slag, the RDBOF showed that Ca-based minerals in the BOF were mostly converted to calcium carbonates (CaCO3) during the direct carbonation process, and it has 184.4 g-CO2/kg-slag of CO2 uptake (conversion rate 51.4%). Whereas, the Ca content of the RIBOF (CaO: 17.6 wt.%) changed significantly compared to the original BOF since 68.5% of Ca was extracted from the inside of the BOF during the extraction step of indirect carbonation process. It was found that the RDBOF and RIBOF have a specific surface area of 24.7 m2/g and 11.7 m2/g, and PZC values of 8.4 and 4.5, respectively. Thus, it was predicted that both residual slags would have different surface adsorption characteristics.
In order to understand the As adsorption/precipitation characteristics of the residual slag, the As removal batch experiment was conducted under various pH conditions. Ten mL of As-contaminated solution (initial concentration: 203.6 mg/L) which was titrated at different initial pH and 0.1 g of the residual were reacted. After the reaction, the As concentration of the supernatant was measured by ICP/OES to calculate the As removal efficiency. The SEM/EDS, TG-DTG, FTIR, and XPS analysis were performed to investigate the As removal mechanism of the residual slag. The RDBOF showed 99.3% of As removal efficiency under the initial pH 1 (final pH 5.96) condition, but the removal efficiency decreased as the initial pH of the solution increased, and 46.5% of As was removed when the initial pH was 10 (final pH 10.28). From the result of SEM/EDS analysis, it was determined that the lower the initial pH of the solution, the more the dissolution of CaCO3 coated on the RDBOF surface was promoted, and the As adsorption was accelerated by the increased Fe-oxide exposure area, which was also supported by TG-DTG and FTIR analyses. On the other hand, RIBOF showed 15.5% of As removal efficiency when the initial pH of the solution was 1 (final pH 2.05), but as the initial pH of the solution increased, the removal efficiency also increased, showing 70.0% of As removal efficiency under the condition of initial pH 10. By considering the PZC of RIBOF, because the surface of RIBOF is negatively charged at a pH condition of neutral or higher, it is hardly expected As-oxyanion adsorption by Fe-oxides on the surface of RIBOF. Nevertheless, negatively charged surface of RIBOF and an As-oxyanion could be linked by the cation bridge effect of divalent or trivalent cations such as Ca2+, Mn2+, and Fe3+. Both residual slags showed relatively low As removal efficiencies under the initial pH 13 conditions, which was attributed to the interference of As adsorption of Fe-oxides by precipitated Ca products on the surface of the Fe-oxide at high pH conditions (pH > 11).
To evaluate the stability of adsorbed/precipitated As on the surface of residual slag, the TCLP test for the As-bearing residual slag was conducted after the batch experiment. From the RDBOF and RIBOF, 0.01 – 1.39 mg/L and 0.57 – 3.12 mg/L of As were leached, respectively. Considering that the desorption rate was less than 2%, it was presumed that both residual slags fixed As in a stable form over the entire pH range.
It has been proved that the residual slags are eco-friendly and low-cost As adsorbents that restrain an increase in pH of the water system, which has been a disadvantage of the SMS as the As remover and both of residual slags exhibit high As removal efficiency and stability according to a specific initial pH condition of the solution.
- Author(s)
- 김경태
- Issued Date
- 2022
- Awarded Date
- 2022. 8
- Type
- Dissertation
- Keyword
- Adsorption Arsenic Mineral carbonation Precipitation Residual slag Soil pollution Stabilization Steelmaking slag
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/32744
http://pknu.dcollection.net/common/orgView/200000644139
- Alternative Author(s)
- Kyeongtae Kim
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 지구환경시스템과학부지구환경과학전공
- Advisor
- 이민희
- Table Of Contents
- CHAPTER 1. INTRODUCTION 1
CHAPTER 2. OBJECTIVES 11
CHAPTER 3. BACKGROUND 12
3.1. Preliminary studies: Various mineral carbonation methods for SMS 12
3.2. Mineral carbonation mechanism of SMS 15
3.2.1. Direct carbonation 15
3.2.1.1. Residual slag generated after the direct aqueous carbonation process 16
3.2.2. Indirect carbonation 18
3.2.2.1. Residual slag generated after the indirect carbonation process 20
CHAPTER 4. MATERIALS AND METHODS 21
4.1. Design of experiments 21
4.2. BOF and residual slag used as an As remover 22
4.2.1. Preparation of the residual slag 23
4.2.1.1. Residual slag from the direct aqueous carbonation process 23
4.2.1.2. Residual slag from the indirect carbonation process 25
4.3. Analyses for the physicochemical characteristics of the slag 26
4.3.1. XRD/XRF analyses 26
4.3.2. TG-DTG analysis 26
4.3.3. Measurement for the point of zero charge (PZC) of the slag 27
4.4. Analyses for structural characteristics of slag 28
4.4.1. SEM analysis 28
4.4.2. BET analysis 28
4.5. Slag leaching test 29
4.6. Heavy metals and As concentration of the raw slag 29
4.7. Batch experiment for the As removal mechanism of the slag 30
4.8. Stability evaluation of adsorbed and/or precipitated As on the slag 32
CHAPTER 5. RESULTS AND DISCUSSION 33
5.1. Physicochemical characterization of the slag 33
5.1.1. XRD/XRF analyses 33
5.1.2. TG-DTG analysis 36
5.1.3. Point of zero charge of the slag 38
5.2. Surface and inner structure characteristics of the slag 40
5.3. Leaching properties of the slag 42
5.4. Heavy metals and As concentration measurement for the raw slag 43
5.5. Comparison of the As removal efficiency of the slag at various pH levels 44
5.6. Identification of the As removal mechanisms of the slag 48
5.6.1. As removal mechanism of the BOF 48
5.6.2. As removal mechanism of the RDBOF 51
5.6.3. As removal mechanism of the RIBOF 57
5.7. Stability of the adsorbed and/or precipitated As on the slag 62
CHAPTER 6. CONCLUSIONS 64
REFERENCES 67
ACKNOWLEDGEMENTS 85
- Degree
- Master
-
Appears in Collections:
- 대학원 > 지구환경시스템과학부-지구환경과학전공
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.