PUKYONG

광산배수슬러지를 이용한 중금속 오염토양 안정화

Metadata Downloads
Alternative Title
Stabilization of heavy metal contaminated soil using mine drainage treated sludge
Abstract
국내 광산 중 47%에 해당하는 광산에서 다양한 광해가 발생하고 있으며, 대표적인 광해인 광산배수(Ming drainage)는 광산 특성에 따라 다양한 중금속을 함유한다. pH가 낮고 비소나 중금속 농도가 높은 광산배수는 하천이나 토양을 직접적으로 오염시킬 수 있으며, 인간의 건강에 심각한 피해를 발생시킬 수 있다.따라서 국내에서는 광산배수 처리를 위한 자연/인공 수질정화시설을 운영하고있다. 광산배수에 존재하는 금속원소는 대부분 중화제나 응집제를 이용하여 금속수산화물의 형태로 침전제거 하는데, 이때 다량의 광산배수슬러지(Mine drainage treated sludge: MDS)가 발생하게 된다. 본 연구에서는 대표적인 광산배수슬러지(산성광산배수슬러지(AMDS)와 석탄광산배수슬러지(CMDS))를 중금속 오염토양의 토양 안정화제로 활용하고자 하였다. 비소(As) 및 중금속으로 오염된 토양에 대하여 안정화제로써 광산배수슬러지의 적용 가능성을 규명하기 위하여, 광산배수슬러지의 특성을 규명하는 다양한 분석과, 독성평가 및용출저감배치실험 등을 수행하였다. MDS의 특성을 분석한 결과, 높은 Fe와 Ca 함량을 보였으며, 폐기물 용출실험결과 낮은 유해 물질 용출율을 나타내었다. 또한 MDS 입자는 넓은 비표면적과 표면에 많은 작용기를 갖고 있어서, As 및 중금속을 고정시킬 수 있는 능력이 뛰어난 것으로 나타났다. As 및 중금속 오염토양에 MDS를 적용한 결과, Pb와 Zn의 농도가 높게 나타난 토양인 A토양의 안정화 효율이 Pb의 경우 90% 이상으로 나타났으며, 이는 MDS의 주 구성 성분인 금속(옥시)수산화물 및 CaCO3와 Pb의 정전기적 흡착 및 공침의 결과로 판단되었다. Zn의 경우 Pb와의 흡착 82경쟁에 의해 다소 낮은 안정화 효율을 보였으나, CMDS의 경우 70% 이상의 안정화 효율을 보였다. As로 오염된 B토양과 C토양의 As 안정화 효율은 80% 이상으로 나타났으며, 안정화제 1%를 첨가한 경우를 제외할 경우 대부분 95% 이상의 높은 안정화 효율을 보였다. As에 대한 MDS의 높은 안정화 효율은 흡착보다는 금속(옥시)수산화물과의 리간드 교환에 의한 착물 형성에 의해 MDS 표면에 As가 고정되는 결과로 판단된다. Zn의 농도가 높은 D토양의 경우 75% 이상의 Zn 안정화 효율을 보였다. MDS의 원재료 가격, 생산비, 운반비, 중금속용출저감률 등을 고려하여 경제성을 평가하였으며, 안정화 효율 대비 제조단가가 100원/kg 내외로 나타나, 기존의다른 철산화물 안정화제와 비교하였을 때 경제성이 뛰어난 것으로 밝혀졌다. 이러한 결과들을 바탕으로 기존에 산업폐기물로 재활용되지 못했던 MDS를 실제 As 및 중금속 오염부지에 토양 안정화제로써 효과적으로 적용할 수 있을 것으로 기대한다.
In the South Korea, 47% of domestic mines are suffering from various mine damage, and the mine drainage (MD) has been the one of serious mine damages. The MD shows the low pH and the high concentration of the As or heavy metals in general, and thus directly contaminates rivers or soil, causing serious damage to human health. Various natural/artificial water purification facilities for the MD treatment have being operated in Korea. During these treatment processes, most of the metal elements present in the MD are precipitated and removed in the form of metal hydroxide using a neutralizer or coagulants, and a large amount of the mine drainage treated sludge (MDS) is generated. The objective of this research is to develop the soil stabilizer that can effectively stabilize the arsenic (As) and heavy metals in soil by using the MDS (two types of acid metal mine drainage treated sludge (AMDS) and coal mine drainage treated sludge (CMDS). In this study, various analyses, toxicity evaluation tests, and leaching reduction batch experiments were performed to investigate the feasibility of the MDS as the stabilizer for soil contaminated with As and heavy metals. As a result of analyzing the characteristics of the MDS, both of MDSs have VIII high Fe and Ca contents, and the extraction rate of harmful substances(mostly heavy metals) leached from them was also very low. In addition, the MDS particles have a large specific surface area and many functional groups on the surface, showing an excellent capability to fix As and heavy metals. As a result of applying MDS to the As and heavy metal contaminated soil, the Pb stabilization efficiency of soil A was higher than 90%, resulting from the electrostatic adsorption and the coprecipitation of metal (oxy) hydroxide and CaCO3, which are components of MDS. In the case of Zn, the stabilization efficiency was somewhat low due to the adsorption competition with Pb, but the Zn stabilization efficiency of the CMDS was > 70%. The As stabilization efficiencies of soil B and soil C were higher than 80% (mostly > 95%) and it comes from the formation of As-bearing complex by ligand exchange with a metal (oxy) hydroxide rather than the physical adsorption. In the case of soil D with high Zn concentration, the Zn stabilization efficiency was higher than 75%. When evaluating the economic feasibility in consideration of raw material price, production cost, transport cost, and heavy metal dissolution reduction rate of the MDS, the unit price compared to the stabilization efficiency was about KRW 100/kg for two MDSs, showing very low cost, compared to other iron oxide stabilizers. Based on these results from this study, it was supposed that the MDS has a great possibility as a soil stabilizer for the As and heavy metal contaminated soils.
Author(s)
탁현지
Issued Date
2022
Awarded Date
2022. 8
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/32745
http://pknu.dcollection.net/common/orgView/200000644115
Alternative Author(s)
Tak Hyunji
Affiliation
부경대학교 대학원
Department
대학원 지구환경시스템과학부지구환경과학전공
Advisor
이민희
Table Of Contents
CHAPTER Ⅰ. INTRODUCTION 1

CHAPTER Ⅱ. OBJECTIVES 7

CHAPTER Ⅲ. BACKGROUND 9
3.1 Heavy metal contaminated soil sampling 9
3.1.1 DRMO soil 10
3.1.2 Cheonan – Mine tailings storage soil 10
3.1.3 Cheonan – Farmland soil 11
3.1.4 Soil at sloped land 11
3.2 Mine Drainage Sludge 13
3.2.1 Acid Mine Drainage Sludge (AMDS) 18
3.2.2 Coal Mine Drainage Sludge (CMDS) 19
3.3 Heavy metal adsorption mechanism 22

CHAPTER Ⅳ. EXPERIMENTAL METHODS 25
4.1 Measurement of the heavy metal concentration for contaminated soils 26
4.2 Measurement of the physical/chemical properties of MDS 28
4.2.1 Analysis of the surface area for MDS 28
4.2.2 X-Ray Diffractometer (XRD)/X-Ray Fluorescence (XRF) analysis 29
4.2.3 Thermo Gravimetric-Differential Thermal Analyzer (TG-DTA) analysis 31
4.2.4 Scanning Electron Microscope-Energy Dispersive (SEM-EDS) analysis 32
4.3 Toxicity leaching test of the MDS 33
4.3.1 Toxicity Characteristics Leaching Procedure (TCLP) test 34
4.3.2 Synthetic Precipitation Leaching Procedure (SPLP) test 35
4.4 Batch extraction experiments for the MDS 37
4.5 The assessment for the economic efficiency of the MDS 41

CHAPTER Ⅴ. RESULTS AND DISCUSSION 42
5.1 Measurement of the heavy metal concentration for contaminated soil 42
5.2 Measurement of the physical/chemical properties of MDS 46
5.2.1 XRD/XRF analysis 46
5.2.2 TG-DTA analysis 49
5.2.3 BET analysis 52
5.2.4 SEM-EDS analysis 55
5.3 Toxicity leaching test 57
5.4 The batch extraction experiments 59
5.5 The assessment for the economic efficiency of the MDS 65

CHAPTER Ⅵ. CONCLUSIONS 67
REFERENCES 70
ACKNOWLEDGMENTS 83
Degree
Master
Appears in Collections:
대학원 > 지구환경시스템과학부-지구환경과학전공
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.