HDLSS 자료에 대한 머신러닝 적용 - 암 진단 자료 중심으로
- Abstract
- HDLSS (high dimension low sample size) refers to high-dimensional but small data. HDLSS data appear frequently in genetic data. In this paper, we intend to examine the data for cancer diagnosis to which HDLSS data belongs.
In this paper, we compare the performance of several machine learning classifiers on HDLSS data. In addition, the loss function is visualized.
And multicollinearity and the influential points will be considered in HDLSS data. We look at the performance results of deep learning considering multicollinearity and influence points.
- Author(s)
- 안소진
- Issued Date
- 2023
- Awarded Date
- 2023-02
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/32940
http://pknu.dcollection.net/common/orgView/200000662608
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 통계학과
- Advisor
- 장대흥
- Table Of Contents
- Ⅰ. 서론 1
Ⅱ. 배경지식 3
2.1 HDLSS 3
2.2 머신러닝 7
2.3 성능 지표 36
2.4 딥러닝 44
2.5 다중공선성 50
2.6 영향점 56
Ⅲ. 머신러닝 성능 비교 59
3.1 머신러닝 성능 59
3.2 손실함수 시각화 98
Ⅳ. 특성 및 영향점을 고려한 딥러닝 106
4.1 다중공선성을 고려한 딥러닝 106
4.2 영향점 141
Ⅴ. 결론 164
참고문헌 167
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 통계학과
- Authorize & License
-
- Authorize공개
- Embargo2023-02-08
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.