LASSO를 이용한 냉동 오징어 소매가격 예측 모형 추정
- Alternative Title
- Estimating the Retail Price Prediction Model of Frozen Squid Using LASSO
- Abstract
- This study predicted the retail price of frozen squid using LASSO. In addition, it was predicted using the Univariate model ARIMA and the Multivariate model ARIMA-X, and VAR. Thereafter, predictive power between models was compared based on the results of the estimated models. In the case of the LASSO, it was divided into two types: static forcast and dynamic forcast. As a result of the prediction, it was found that the results of static forecast were superior to those of dynamic forecast. Among the models which performed static forecast, the prediction results of Adaptive LASSO to predict 1 month later were the best. In the univariate models, the ARIMA(2,1,2) model had the best predictive power, and the ARIMA-X(2,1,2) made the most accurate prediction in the multivariate models. Based on the prediction results, the MDM test showed that the predictive power of Adaptive LASSO with static forecast was superior to that of LASSO with dynamic forecast, ARIMA(2,1,2), Multivariate model ARIMA-X(2,1,2), and VAR(5).
- Author(s)
- 강동현
- Issued Date
- 2023
- Awarded Date
- 2023-02
- Type
- Dissertation
- Keyword
- 머신러닝, 가격 예측, ARIMA, LASSO, VAR. ARIMA-X
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/32946
http://pknu.dcollection.net/common/orgView/200000669283
- Alternative Author(s)
- Kang Dong Hyun
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 자원환경경제학과
- Advisor
- 박철형
- Table Of Contents
- Ⅰ. 서론 1
1. 연구의 배경 및 목적 1
2. 연구 방법 및 구성 4
3. 선행연구 6
Ⅱ. 오징어 산업 현황 16
1. 일반 현황 16
2. 생산량 및 생산금액 18
3. 유통경로 21
4. 수출입 현황 27
5. 가격 및 재고량 현황 30
Ⅲ. 분석모형 34
1. LASSO 모형 34
2. ARIMA 모형 38
3. VAR 모형 39
4. 예측오차 40
5. MDM 검정 41
Ⅳ. 실증분석 43
1. 자료 개요 43
2. LASSO 모형 추정 45
3. 단변량 시계열 모형(ARIMA) 추정 72
4. 다변량 시계열 모형(ARIMA-X, VAR) 추정 78
5. MDM 검정 84
Ⅴ. 결론 88
참고문헌 92
부록 97
- Degree
- Master
-
Appears in Collections:
- 대학원 > 자원환경경제학과
- Authorize & License
-
- Authorize공개
- Embargo2023-02-08
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.