머신러닝-SHAP value를 활용한 탄소 나노 전왜성 센서의 형상설계 및 온도보상 연구
- Abstract
- A carbon nano composite having piezoresistivity can be fabricated with nano carbon isotopes such as carbon nanotubes (CNTs), and graphene as fillers in an epoxy matrix. A piezoresistive composite strain sensor is one of the promising applications of the carbon nano composite using the excellent properties of the fillers, and there have been many studies. The piezoresistive composite strain sensor may be able to design its sensitivity by the fabrication parameters such as filler weight percent (wt%) and the geometric pattern of the sensor. However, it is difficult to accurately predict the sensitivity because variables in the composite fabrication process may induce nonlinear effects on sensor characteristics. The piezoresistive sensor has suffered a sensitivity design difficulty due to a lack of piezoresistivity analysis. The piezoresistive sensitivity designs seem to depend on experience, and systematic study is needed to solve the uncertainty of its fabrication process. Still, only a few studies have attempted to design the piezoresistivity of the sensors. This study showed that filler content and patterns of the composite could determine the sensitivity of the CNT/epoxy strain sensor based on the tunneling resistance model. Through this, it was shown that a gauge factor could be designed by the composite geometrical pattern. Data from 1,200 sensor samples were analyzed to experimentally investigate the contributions of the carbon nano composites' gauge factor via the filler contents, length, and width variations. The data were quantitatively analyzed via the lightGBM model and SHAP (SHapley Additive exPlanation) value. The analysis revealed that the filler content of the composite contributes the most to the gauge factor. From the view of the geometric pattern of the sensor, the length does not affect the gauge factor. However, the pattern width is related to the piezoresistivity, and a narrower width can improve the sensitivity. Another experimental study was also conducted to compensate for the temperature dependence of the carbon nano composite piezoresistive sensor. The electrical resistance of CNT/epoxy-based piezoresistive sensors varies with environmental temperature, and the variation may deteriorate its reliability for applications. The temperature compensation effect for the sensors was experimentally studied via comparisons with the signal outputs from 3 Wheatstone bridge types, such as principle half bridge, full bridge, and quarter bridge signals, respectively. The experiment confirmed that the voltage signal changed to 6 mV/V in the quarter bridge, and the Wheatstone bridge in half and full bridge showed output voltage variations within 1 mV/V under temperature changes. Through these results, this study presented a new sensitivity design strategy for carbon nano composite piezoresistive sensors using machine learning. It also provided temperature compensation to improve sensor reliability for signal processing.
- Author(s)
- 조정훈
- Issued Date
- 2023
- Awarded Date
- 2023-02
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/33063
http://pknu.dcollection.net/common/orgView/200000666862
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 기계설계공학과
- Advisor
- 강인필
- Table Of Contents
- Ⅰ. 서 론 1
Ⅰ-1. 연구 배경 1
Ⅰ-2. 연구 목적 및 내용 4
Ⅱ. 관련 이론 5
Ⅱ-1. 탄소 나노 재료 5
Ⅱ-1-가. 탄소 나노 튜브 5
Ⅱ-1-나. 그래핀 8
Ⅱ-2. 응력, 변형률, 푸아송 비 10
Ⅱ-2-가. 응력과 변형률 10
Ⅱ-2-나. 푸아송 비 12
Ⅱ-3. 보의 처짐과 스트레인 13
Ⅱ-4. 전왜성과 센서 게이지 계수 14
Ⅱ-5. 머신러닝과 SHAP value 16
Ⅱ-5-가. 머신러닝과 앙상블 16
Ⅱ-5-나. Gradient boosting과 lightGBM 17
Ⅱ-5-다. SHAP value 19
Ⅱ-6. 탄소 나노 복합재료의 온도 특성 21
Ⅱ-7. Wheatstone bridge 22
Ⅲ. 탄소 나노 복합재료 제작 및 전왜성 메커니즘 24
Ⅲ-1. 탄소 나노 복합재료 분산 및 제작 기법 24
Ⅲ-2. 탄소 나노 복합재료의 전왜성 메커니즘 27
Ⅲ-3. 스트레인에 따른 저항의 변화 31
Ⅳ. 머신러닝 기반 센서 형상설계 34
Ⅳ-1. 센서 형상에 따른 게이지 계수의 상관관계 34
Ⅳ-2. 데이터 수집용 샘플 제작 및 게이지 계수 측정 실험 36
Ⅳ-2-가. 샘플 제작 및 실험 방법 36
Ⅳ-2-나. 복합재 센서 형상에 따른 게이지 계수 측정 실험 결과 38
Ⅳ-3. 머신러닝 모델 선정 및 하이퍼 파라미터의 설정 40
Ⅳ-4. SHAP value 기반 형상 별 게이지 계수 기여도 비교 42
Ⅳ-4-가. 전체 데이터에 대한 SHAP value 42
Ⅳ-4-나. wt% 별 데이터에 대한 SHAP value 44
Ⅳ-4-다. 기여도 데이터 분석 46
Ⅴ.Wheatstone bridge 활용 온도보상 47
Ⅴ-1. 탄소 나노 복합재의 온도 의존성 실험 47
Ⅴ-2. Wheatstone bridge와 온도보상 48
Ⅴ-3. Bridge 타입 별 온도보상 연구 50
Ⅴ-3-가. Quarter bridge 50
Ⅴ-3-나. Half bridge 51
Ⅴ-3-다. Full bridge 52
Ⅴ-3-라. Bridge 타입 별 온도보상 53
Ⅴ-4. Wheatstone bridge를 활용한 온도보상 연구 결과 54
Ⅵ. 결론 57
Ⅶ. 참고문헌 59
- Degree
- Master
-
Appears in Collections:
- 대학원 > 기계설계공학과
- Authorize & License
-
- Authorize공개
- Embargo2023-02-08
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.