PUKYONG

Uranium sorption characteristics of the WRK bentonite considered as an engineered barrier material at the spent nuclear fuel (SNF) repository

Metadata Downloads
Alternative Title
SNF 처분장 내 공학적 방벽 소재로 고려중인 WRK 벤토나이트의 우라늄 흡착 특성
Abstract
국내 사용후핵연료(SNF; Spent nuclear fuel) 처분장의 완충재 소재로서 WRK (WRK; Waste Repository Korea) 벤토나이트의 적합성을 평가하기 위하여, WRK 벤토나이트의 물리적∙광물학적∙화학적 특성과 대표적인 SNF인 우라늄(U; Uranium)에 대한 흡착 효율 및 흡착 기작을 규명하였다. 수용액 내 U의 존재 형태는 pH범위에 따라 다르게 나타나므로, 본 연구에서는 pH 3−11조건에서 WRK 벤토나이트의 U 흡착 효율을 정량적으로 계산하기 위한 실내 실험과 U 흡착 기작을 이해하기 위한 흡착 동역학 모델 연구를 수행하였다.
WRK 벤토나이트의 광물학적∙화학적 특성 분석 결과, WRK 벤토나이트의 주요 광물은 높은 흡착 능력을 가지는 몬모릴로나이트이며, 층간의 교환 가능한 양이온으로 Ca2+를 가지는 ‘Ca-벤토나이트’인 것으로 밝혀내었다. SEM/TEM 분석을 통해WRK 벤토나이트의 다공성 및 층상 구조(0.8 nm)가 관찰되었으며, BET, CEC, Zeta potential 분석을 통해 WRK 벤토나이트가 충분한 표면적(55.92 m2/g), 높은 CEC 값(78.11 meq/100 g), 그리고 넓은 pH 범위에서 음전하 표면 특징을 가지는 것으로 나타나, WRK 벤토나이트가 SNF 처분장 내 공학적 방벽인 완충재 소재로서 U 거동을 효과적으로 제한할 수 있음을 알 수 있었다.
다양한 pH 조건에서 WRK 벤토나이트에 대한 U 흡착 효율을 규명하기 위한 회분식 흡/탈착 실험을 수행하였다. pH 5, 6, 10, 11에서 84.34%, 77.98%, 74.17%, 80.81%의 높은 U 흡착 효율을 보였고, pH 3, 7에서는 45.34%, 41.88%의 상대적으로 낮은 U 흡착 효율을 나타내었다. 이러한 결과는 용액 내에서 U가 pH에 따라 다양한 형태로 존재하고, 존재 형태에 따라 흡착 기작이 달라지기 때문으로 판단되었다. U 탈착 실험 결과, pH 5, 6, 10, 11조건에서 WRK 벤토나이트의 U 탈착률은 15% 미만을 나타내었고, 특히 pH 5와 6에서의 탈착률은 0.77%와 1.37%로 매우 낮게 나타나, WRK 벤토나이트에 U가 안정적으로 흡착되었음을 확인하였다. 흡/탈착 실험에서 WRK 벤토나이트와 U의 낮은 혼합 비율(2 g/L)에도 불구하고 80% 이상의 높은 U 흡착 효율과 2% 미만의 낮은 U 탈착률이 나타났으며, 이러한 결과들은 WRK 벤토나이트가 SNF 처분장에서 U 거동을 제한하는 완충재 소재로서 사용될 수 있음을 의미한다. 흡착 동역학 모델링 결과, 모든 pH 조건에서 유사 2차 모델(Pseudo 2nd-order model)에 대하여 높은 신뢰도(R2>0.98)를 나타내어, WRK 벤토나이트에 대한 U 흡착은 단순 물리적 흡착보다는 화학적 흡착이 우세하다는 것을 알 수 있었다.
WRK 벤토나이트의 U흡착 기작을 화학적 흡착 위주로 가정하여 pH 별 주요 흡착 기작을 규명하였다. pH 3, 5, 6에서 U는 주로 UO22+ 및 양이온성 U-수산화 복합체로 존재하며, 이들은 WRK 벤토나이트의 외부 및 내부 산소(O-)와의 정전기적 인력(예: 이온 결합)에 의해 흡착되는 것으로 판단되었다. pH가 중성인 경우(pH 7), 대기로부터 용해된 CO2로 인해 주로 U-탄산염 복합체 존재하며, U-탄산염 복합체의 높은 용해도로 인하여 낮은 U 흡착 효율이 나타났다. pH 10, 11조건에서는 용액 내 많은 수의 OH-으로 인해 음이온성 U-수산화 복합체로 존재하는 것으로 나타나, WRK 벤토나이트의 외부 및 내부 공간에서 다양한 고상의 복합체를 형성하거나 또는 WRK 벤토나이트 표면의 침전 반응에 의해 흡착될 것이라고 예측되었다. 흡착 실험 결과로부터 용액의 pH에 따라 WRK 벤토나이트에 대한 U 흡착 효율과 흡착 기작이 다르게 나타남을 알 수 있었다.
특정 pH 조건에서 WRK 벤토나이트의 뛰어난 U 흡착 능력을 통해 처분장 지하수의 환경을 적절하게 조절한다면, WRK 벤토나이트가 SNF 처분장에서 완충재 소재로서 U 거동을 효과적으로 제한할 수 있을 것으로 판단되었다. 처분장 지하수의 환경을 중성이나 알칼리성 pH 조건으로 유지하여 U-수산화 복합체 형성을 촉진하거나, 지하수 내 CO2 유입을 차단하여 U-탄산염 복합체의 형성을 제한함으로써, WRK 벤토나이트의 흡착 효율을 증가시킬 수 있을 것으로 판단된다. 현재 WRK 벤토나이트의 특성 및 U 흡착 특성에 관한 연구는 미흡한 실정이며, 본 연구에서는 다양한 실내 실험과 모델 연구를 통해 국내 SNF 처분장의 완충재 소재로서 WRK 벤토나이트의 적합성을 평가할 수 있는 정량적 자료들을 제시하였다.|To evaluate the suitability of the WRK (Waste Repository Korea) bentonite as a buffer material at the SNF repository in Korea, physical, mineralogical, and chemical properties of the WRK bentonite were identified and its adsorption efficiency and mechanisms for the uranium (U), which is a representative radionuclide of the SNF, were investigated in this study. Because the speciation of the U in solution depends on the pH conditions, adsorption/desorption batch experiments at various pH conditions (pH 3−11 in solution) were performed to quantitatively calculate the U adsorption efficiency and the U adsorption kinetic model studies were also conducted for the understanding of the U adsorption mechanisms.
Mineralogical and compositional analyses supported that the major mineral of the WRK bentonite is the montmorillonite with the great adsorption capacity, and it is classified to the ‘Ca-bentonite’, which is composed of the interlayer exchangeable Ca2+ ions. Porous and layered structures (0.8 nm) of the WRK bentonite were also observed through the SEM/TEM analyses and it had enough surface area (55.92 m2/g), high CEC value (78.11 meq/100 g), and the negatively charged surface for a wide range of the pH, supporting that the WRK bentonite has a great possibility for the U adsorption. As a result of the U adsorption batch experiments, the U adsorption on the WRK bentonite reached the adsorption equilibrium within 48 hours. High U adsorption efficiencies of 84.34%, 77.98%, 74.17%, and 80.81% were acquired at pH 5, 6, 10, and 11. In contrast, the relatively low U adsorption efficiencies of 45.34% and 41.88% were observed at pH 3 and 7. These results suggested that the U exists as various forms in solution depending on the pH, and the adsorption mechanism varies according to their speciation. The U desorption rates at pH 5, 6, 10, and 11 were less than 15% for 48 hours of the desorption time. In particular, at pH 5 and 6, the desorption rates were 0.77% and 1.37%, supporting that the U was stably adsorbed onto the WRK bentonite. Despite the low WRK bentonite/U ratio in solution (2 g/L), the high U adsorption efficiency (>80%) and the low U desorption rate (<2%) were acquired for the WRK bentonite, showing its high applicability to prevent the U migration in the SNF repository. From results of the adsorption kinetic modeling, the pseudo 2nd-order model (R2>0.98) was well fitted to experimental results, supporting that the U adsorption mechanism on the WRK bentonite was mainly based on the chemical adsorption reaction.
The U adsorption mechanisms of the WRK bentonite were understood according to pH conditions based on results in this study. At pH 3, 5, and 6, the U was adsorbed as forms of UO22+ and the U-hydroxyl complexes, mainly by the electrostatic attractions with oxygen (O-) of the outer and inner-sphere on the WRK bentonite. At pH 7, the U-carbonate complexes become the dominant adsorption species due to the CO2 dissolved from the atmosphere, and at pH 10 and 11, the U-hydroxyl complexes due to the increase of OH- in solution. Both complexes can be adsorbed in the outer and inner-sphere of the WRK bentonite as well as the simple surface precipitation reaction. However, due to the high solubility of the U-carbonate complex, it exhibits the relatively low U adsorption efficiency at pH 7, compared to at pH 10 and 11. These results supported that the U adsorption on the WRK bentonite can occur simultaneously in the outer and inner-sphere, but the major U adsorption mechanisms is different according to the pH conditions.
The U adsorption efficiency of the WRK bentonite can be increased by controlling the oxidation-reduction state to promote the formation of the U(IV) in solution, which could be easily adsorbed onto the interlayer through the ion exchange process, or by preventing the CO2 inflow to limit the formation of the U-carbonate complexes at neutral pH condition. Through this series of processes, the WRK bentonite can effectively limit the U migration as the buffer material in the SNF repository. Previous researches for the properties of the WRK bentonite and its U adsorption capacity do not exist and this study will support meaningful and quantitative data to evaluate the feasibility of the WRK bentonite as the buffer material for the SNF repository in the South Korea.
Author(s)
오유나
Issued Date
2023
Awarded Date
2023-08
Type
Dissertation
Keyword
Bentonite, Buffer, Deep geological repository, Engineered barrier, High-level radioactive waste, Radionuclide, Spent nuclear fuel, Uranium
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/33317
http://pknu.dcollection.net/common/orgView/200000694804
Affiliation
부경대학교 대학원
Department
대학원 지구환경시스템과학부지구환경과학전공
Advisor
이민희
Table Of Contents
CHAPTER 1. INTRODUCTION 1

CHAPTER 2. OBJECTIVES 9

CHAPTER 3. BACKGROUND 10
3.1. Uranium (U) 10
3.2. Bentonite as the buffer material in the SNF repository 14

CHAPTER 4. MATERIALS AND METHODS 20
4.1. Material 20
4.1.1. Preparation of the WRK bentonite 20
4.1.2. Preparation of the U 21
4.2. Characterizations of the WRK bentonite 22
4.2.1. Analyses for the physical characteristics of the WRK bentonite 22
4.2.2. Analyses for the mineral and chemical characteristics of the WRK bentonite 25
4.2.2.1. XRD/XRF analyses 25
4.2.2.2. Zeta potential analysis 26
4.2.2.3. CEC analysis 26
4.2.3. Analyses for the structural characteristics of the WRK bentonite 27
4.2.3.1. SEM-EDS/TEM analyses 27
4.2.3.2. FTIR analysis 28
4.2.3.3. BET analysis 28
4.3. The U batch experiments for the WRK bentonite 29
4.3.1. Adsorption batch experiment for the effect of the reaction time 29
4.3.2. Desorption batch experiment for the effect of the reaction time 31
4.4. The U adsorption kinetic model studies for the WRK bentonite 33
4.4.1. Pseudo 1st-order model 33
4.4.2. Pseudo 2nd-order model 34

CHAPTER 5. RESULTS AND DISCUSSION 36
5.1. Characterizations of the WRK bentonite 36
5.1.1. Physical characteristics of the WRK bentonite 36
5.1.2. Mineral and chemical characteristics of the WRK bentonite 38
5.1.2.1. XRD analysis 38
5.1.2.2. XRF analysis 39
5.1.2.3. Zeta potential analysis 41
5.1.2.4. CEC analysis 42
5.1.3. Structural characteristics of the WRK bentonite 43
5.1.3.1. SEM/TEM analyses 43
5.1.3.2. FTIR analysis 44
5.1.3.3. BET analysis 46
5.2. Investigation for the U adsorption efficiency and desorption rate on the WRK bentonite 47
5.2.1. Effect of the pH 47
5.2.2. The U adsorption efficiency on the WRK bentonite at various pH conditions 49
5.2.3. The U desorption rate on the WRK bentonite at various pH conditions 51
5.3. Comparison of the WRK bentonite characterizations before and after the U adsorption 53
5.3.1. XRD analysis before and after the U adsorption 53
5.3.2. XRF analysis before and after the U adsorption 55
5.3.3. SEM-EDS analysis before and after the U adsorption 56
5.4. Comparison of the U adsorption kinetic models on the WRK bentonite at various pH conditions 57
5.5. Understanding of the U adsorption mechanisms on the WRK bentonite at various pH conditions 59
5.5.1. The U adsorption mechanisms on the WRK bentonite at pH 3, 5, and 6 59
5.5.2. The U adsorption mechanisms on the WRK bentonite at pH 7, 10, and 11 64

CHAPTER 6. CONCLUSIONS 67

REFERENCES 68

ACKNOWLEDGEMENTS 86
Degree
Master
Appears in Collections:
대학원 > 지구환경시스템과학부-지구환경과학전공
Authorize & License
  • Authorize공개
  • Embargo2023-08-07
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.