설명가능한 인공지능(XAI)을 활용한 선박 연료 소모량 예측
- Alternative Title
- Prediction of vessel fuel consumption using explainable artificial intelligence (XAI)
- Abstract
- This study proposes a prediction model for fuel consumption in ships using XGBoost and SHapley Additive exPlanation (SHAP) to explain the predicted values. Previous studies have relied solely on operational data from ships to develop prediction models, neglecting the incorporation of external weather data. However, recently, a method has been applied to increase accuracy by utilizing both operational and external weather data. Nonetheless, the reliability of the prediction results and the variables used in the prediction model implementation remained unexplained. To address these issues, XGBoost and SHAP were used in this study to develop the prediction model.
This study provides an introduction to the research background, scope, relevant regulations, and previous studies, as well as the research methodology. It also explains the data cleaning method for ships and verifies the prediction model's results. Additionally, it covers XAI-related theories and the prediction model for fuel consumption in ships using XGBoost, as well as the SHAP-based method for explaining variable influence. Finally, it discusses the final results of this research and proposes future research directions.
- Author(s)
- 김현주
- Issued Date
- 2023
- Awarded Date
- 2023-08
- Type
- Dissertation
- Keyword
- 선박, 연료소모량, 인공지능
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/33477
http://pknu.dcollection.net/common/orgView/200000693894
- Alternative Author(s)
- Hyun ju Kim
- Affiliation
- 부경대학교 대학원
- Department
- 산업 및 데이터공학과(산업데이터공학융합전공)
- Advisor
- 이지환
- Table Of Contents
- Ⅰ. 서론 1
1. 연구 배경 1
2. 연구 목표 및 내용 3
Ⅱ. 관련 규제 및 선행 연구 5
1. 국제해사기구(IMO)의 환경 규제 동향 5
1.1 운항선 효율지수(EEXI) 7
1.2 탄소집약도지수(CII) 9
2. 선행 연구 고찰 12
2.1 머신러닝 기반의 선박 연료소비량 예측 관련 연구 12
2.2 XAI 기반의 선박 연료소비량 분석 관련 연구 14
Ⅲ. 선박 연료소모량 예측 19
1. 연구 방법 소개 19
2. 데이터 설명 21
3. 데이터 정제 및 전처리 24
3.1 데이터 정제 24
3.2 데이터 전처리 24
4. XAI 관련 이론 고찰 32
5. XGboost 적용 선박 연료소모량 예측 모델 35
6. XGboost 적용 선박 연료소모량 예측 모델 평가 35
7. SHapley Additive exPlanation(SHAP)을 통한 모델 해석 39
Ⅳ. 결론 53
참고문헌 55
감사의 글 57
- Degree
- Master
-
Appears in Collections:
- 대학원 > 산업및데이터공학과
- Authorize & License
-
- Authorize공개
- Embargo2023-08-07
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.