PUKYONG

DNN 모델 기반 HVAC 제어 설정값 최적화 알고리즘 개발 및 효과 검증에 대한 연구

Metadata Downloads
Alternative Title
A study on the Development and Effectiveness Verification of Optimal Control Algorithm for HVAC System Based on Deep Neural Network Model
Abstract
The purpose of this study is to develop a DNN model-based HVAC control setting value optimization algorithm and verify its effectiveness. A Deep Neural Network (DNN) model was developed to predict operating costs for heat source systems equipped with absorption chiller. Using this, optimal control algorithm for HVAC was developed. In addition the effect was verified by applying it to the actual building located in Suwon. The prediction accuracy of the DNN model developed through actual operation data was 0.769 percent for R2 score and 18.93% for CVRMSE, satisfying the performance criteria suggested by ASHRAE Guideline 14. The algorithm that interlocks with the BEMS(Building Energy Management System) of the target building calculated a optimal control setting value that minimizes operation costs by fetching operation data every 20 minutes. This was transmitted to the BEMS to control the HVAC. As a result of applying the algorithm, it was confirmed that the operating cost was reduced by operating the cooling water supply temperature close to the wet-bulb temperature and reducing steam consumption. It was confirmed that it was reduced by 4.60% when comparing simple costs, and reduced by 31.0% when converted to the same cooling capacity costs.
Author(s)
박석민
Issued Date
2024
Awarded Date
2024-02
Type
Dissertation
Keyword
HVAC, DNN, BEMS, Optimal control algorithm
Publisher
국립부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/33575
http://pknu.dcollection.net/common/orgView/200000738860
Alternative Author(s)
PARK SEOK MIN
Affiliation
국립부경대학교 대학원
Department
대학원 냉동공조공학과
Advisor
李霽憲
Table Of Contents
제 1장 서 론 1
1.1 연구 배경 및 목적 1
1.2 기존 연구 동향 4
1.3 연구 범위 및 내용 8
제 2장 이론적 배경 10
2.1 인공신경망 10
2.1.1 인공신경망 개요 10
2.1.2 인공신경망의 학습 방법 12
2.2 하이퍼 파라미터 최적화 14
2.2.1 매뉴얼 서치 15
2.2.2 그리드 서치 15
2.2.3 랜덤 서치 16
2.2.4 하이퍼밴드 17
2.2.5 베이지안 최적화 18
2.3 흡수식 냉동기 20
제 3장 제어 설정값 최적화 알고리즘 개발 22
3.1 대상 건물 22
3.1.1 대상 건물 및 공조시스템 22
3.1.2 대상 건물 제어 시스템 24
3.2 DNN 기반 예측 모델 25
3.2.1 DNN 기반 예측 모델 개요 25
3.2.2 DNN 기반 예측 모델 개발 27
3.2.3 베이지안 최적화를 통한 예측 성능 개선 32
3.3 최적 설정값 34
3.3.1 최적 설정값 제어 대상 34
3.3.2 최적 설정값 계산 방법 35
3.3.3 최적 설정값 예측 결과 37
제 4장 알고리즘 효과 검증 39
4.1 경계 조건 40
4.1.1 경계 조건 비교 40
4.1.2 베이스라인 선정 42
4.2 운전 상태 44
4.2.1 냉각수 송수온도 44
4.2.1 냉수 송수온도 45
4.3 운전 비용 46
4.3.1 운전 비용 단순 비교 46
4.3.2 동일 처리 열량 환산 운전 비용 비교 47
제 5장 결 론 49
참고문헌 51
감사의 글 54
Degree
Master
Appears in Collections:
대학원 > 냉동공조공학과
Authorize & License
  • Authorize공개
  • Embargo2024-02-16
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.