Facile fabrication of stimuli-responsive biopolymeric-derived hydrogels through click chemistry for drug delivery application
- Alternative Title
- 약물 전달 응용을 위한 클릭 화학을 통한 자극 반응형 생체고분자 유래 하이드로겔의 손쉬운 제작
- Abstract
- Cross-linked bio-polymeric-derived hydrogels have been extensively studied in the development of drug delivery systems with high efficiency. The drug delivery performance of bio-polymers in transporting drug molecules within physiological conditions can be controlled through the systematic design of cross-linker chemical structures and the conjugation of bio-polymers with appropriate moieties. In this dissertation, NIR/reduction-responsive drug delivery systems were developed by employing novel crosslinked gelatin/carboxymethyl cellulose (CMC)/Alginate (Alg)-based hydrogels. The study covers a systematic investigation of the effects of near-infrared (NIR)/reducing environment on gelatin-modified norbornene crosslinked through water-soluble diselenide di- polyethylene glycol-di-tetrazine (DSe-DPEG-DTz), cross-linker loaded with doxorubicin along with indocyanine green. Furthermore, the facile fabrication of CMC/Alg via IEDDA click chemistry loaded with indocyanine green for photothermal and photodynamic anti-tumor therapy was also explored. The covalent bond between polymer backbones and the cross-linkers proceeded via a ‘‘click chemistry’’ reaction, such as inverse electron demand diels alder (IEDDA). This type of reaction was selected owing to its simple and facile process. Biocompatibility was considered in selecting a polymer such as gelatin, CMC, and Alg. In the first study, gelatin-modified norbornene (Gel-Nb) was cross-linked with DSe-DPEG-DTz through IEDDA click chemistry to investigate the NIR/reduction-responsive behavior of the fabricated hydrogels. The release of drug (Doxorubicin) molecules could be effectively controlled by employing NIR light and reducing the environment. The second study investigated the NIR-responsive performance through CMC/Alg-derived, ICG- loaded, hydrogels fabricated through a click chemistry mechanism. NIR light (808 nm) is safe and considered a non-invasive technique for photothermal/photodynamic (PTT/PDT) anti-tumor applications. Various analyses and characterization techniques were used in this dissertation such as proton nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, Field emission scanning electron microscopy (FE-SEM), rheological analyses, swelling, in-vitro drug release, and anti-tumor activities. In conclusion, the studies demonstrated that preparing a biopolymer-based drug delivery hydrogel matrix with a suitable cross-linker played a vital role. NIR and reduction-responsive hydrogels were successfully fabricated by using an IEDDA click reaction between norbornene and tetrazine moieties. The viscoelastic and morphological properties of hydrogels were greatly influenced by the concentration of the respective cross-linking molecules. Gel-Nb was efficiently cross-linked with DSe-DPEG-DTz, resulting in a porous structure and effective mechanical properties. The DOX/ICG-loaded hydrogels released minimal amounts (26%) of DOX and (23%) of ICG at a physiological condition (PBS, pH 7.4), respectively. On the contrary, a fast release of DOX (>95%) and ICG (>80%) was observed in a reducing environment and under NIR irradiation simultaneously after 48 and 24 h respectively. The DOX/DOX+ICG-loaded hydrogels showed good efficacy under a reducing/NIR environment against BT-20 cells. The hydrogels derived from CMC/Alg exhibited viscoelastic properties (G′ ~ 492-270 Pa) and high porosity and showed a PTT/PDT anti-tumor effect. The ICG-encapsulated hydrogels demonstrated ROS generation ability under NIR exposure. The ROS production was investigated through DPBF assays to access the photodynamic effect (with NIR irradiation at 1-2W for 5-15 min). The temperature of the ICG-loaded hydrogels was also raised upon the NIR irradiation to eradicate tumor cells photothermally. The In vitro cytocompatibility assessments revealed the non- toxic nature of CMC-Nb and Alg-mTz towards HEK-293 cells. Furthermore, the ICG-loaded hydrogels effectively inhibited the metabolic activity of Hela cells following NIR exposure. This innovative hydrogel system holds promise for applications in combined PTT and PDT.|가교된 천연 고분자 유래 하이드로겔은 고효율의 약물 전달 시스템 개발을 위해 광범위하게 연구되어 왔습니다. 생리적 조건 내에서 약물 분자를 운반하는 천연 고분자의 약물 전달 성능은 가교제 화학 구조의 체계적인 설계와 천연 고분자와 적절한 모티어와의 접합을 통해 제어할 수 있습니다.
이 논문에서는 새로운 가교 젤라틴/카복시메틸 셀룰로오스(CMC)/알지네이트(Alg) 기반 하이드로젤을 사용하여 근적외선/환원 반응성 약물 전달 시스템을 개발했습니다. 이 연구는 인도시아닌(ICG) 그린과 함께 독소루비신이 탑재된 가교제인 수용성 디셀레나이드 디 폴리에틸렌 글리콜-디 테트라진(DSe-DPEG-DTz)을 통해 가교된 젤라틴 변성 노르보넨에 대한 근적외선(NIR)/환원 환경의 영향을 체계적으로 조사했습니다. 또한, 광열 및 광역학 항암 치료를 위해 인도시아닌 그린(ICG)이 탑재된 inverse electron demand Diels-Alder (IEDDA) 클릭 화학을 통해 CMC/Alg를 쉽게 제조할 수 있는 방법도 연구했습니다.
고분자 구조체와 가교제 사이의 공유 결합은 IEDD와 같은 '클릭 화학 (click-chemistry)' 반응을 통해 진행되었습니다. 이러한 유형의 반응은 공정이 간단하고 쉽기 때문에 선택되었습니다.
젤라틴, CMC, Alg와 같은 재료를 선택할 때 생체 적합성을 고려했습니다. 첫 번째 연구에서는 젤라틴 변성 노르보르넨(gelatin-norbornene, Gel-Nb)을 IEDDA 클릭 화학을 통해 DSe-DPEG-DTz와 가교 결합하여 제조된 하이드로젤의 근적외선/환원 반응 거동을 조사했습니다. 약물(DOX) 분자의 방출은 근적외선과 환원 환경을 이용하여 효과적으로 제어할 수 있었습니다. 두 번째 연구는 클릭 화학 메커니즘을 통해 제조된 CMC/Alg 유래, ICG 탑재 하이드로젤을 통해 NIR 반응 성능을 조사했습니다. 근적외선(808nm)은 안전하며 광열/광역학(PTT/PDT) 항종양 애플리케이션을 위한 비침습적 기술로 간주됩니다.
본 논문에서는 양성자 핵자기공명(1H-NMR) 분광법, 푸리에 변환 적외선(FT-IR) 분광법, 자외선 가시광선(UV-vis) 분광법, 형광 분광법, 전계 방출 주사 전자 현미경(FE-SEM), 유변학 분석, 팽창, 체외 약물 방출 및 항종양 활성 등 다양한 분석 및 특성화 기법이 사용되었습니다.
결론적으로, 이 연구는 적절한 가교제로 생체 고분자 기반 약물 전달 하이드로겔 매트릭스를 준비하는 것이 중요한 역할을 한다는 것을 입증했습니다. 또한 근적외선 및 환원 반응성 하이드로겔은 노르보르넨과 테트라진 간의 IEDDA 클릭 반응을 사용하여 성공적으로 제조되었습니다. 하이드로겔의 점탄성 및 형태학적 특성은 각 가교 분자의 농도에 따라 크게 영향을 받았습니다.
Gel-Nb는 DSe-DPEG-DTz와 효율적으로 가교 결합되어 다공성 구조와 효과적인 기계적 특성을 갖게 되었습니다. DOX/ICG가 탑재된 하이드로겔은 생리적 조건(PBS, pH 7.4)에서 각각 최소한의 DOX(26%)와 ICG(23%)를 방출했습니다. 반면, 환원 환경과 근적외선 조사에서는 각각 48시간과 24시간 후에 DOX(>95%)와 ICG(>80%)가 동시에 빠르게 방출되는 것이 관찰되었습니다. DOX/DOX+ICG 탑재 하이드로젤은 유방암 세포(BT-20)에 대한 환원/NIR 환경에서 우수한 효능을 보였습니다. CMC/Alg에서 추출한 하이드로젤은 점탄성(G′ ~ 492-270 Pa)과 높은 다 공성을 보였으며 PTT/PDT 항종양 효과를 나타냈습니다. ICG 캡슐화 하이드로젤은 근적외선 노출 시 ROS 생성 능력을 보여주었습니다. 광 역학 효과에 접근하기 위해 DPBF 분석을 통해 ROS 생성을 조사했습니다(1-2W, 5-15분 NIR 조사). 또한 종양 세포를 광열적으로 박멸하기 위해 NIR 조사 시 ICG가 탑재된 하이드로젤의 온도를 높였습니다. 시험관 내 세포 적합성 평가 결과, HEK-293 세포에 대한 CMC-Nb 및 Alg-mTz의 무독성 특성이 밝혀졌습니다. 또한 ICG가 탑재된 하이드로젤은 근적외선 노출 후 암세포의 대사 활동을 효과적으로 억제했습니다. 결과적으로 이러한 혁신적인 하이드로겔 시스템은 PTT와 PDT를 결합한 응용 분야에 대한 가능성을 제시합니다.
- Author(s)
- RIZWAN ALI
- Issued Date
- 2024
- Awarded Date
- 2024-02
- Type
- Dissertation
- Keyword
- Hydrogel, Click chemistry, Drug delivery
- Publisher
- 국립부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/33590
http://pknu.dcollection.net/common/orgView/200000742972
- Affiliation
- 국립부경대학교 대학원
- Department
- 대학원 스마트그린기술융합공학과
- Advisor
- Kwon Taek Lim
- Table Of Contents
- Chapter 1: Facile fabrication of stimuli-responsive biopolymeric-derived hydrogels through click chemistry for drug delivery application 1
1.1. Introduction 1
1.1.1. Background on biopolymer-derived hydrogels 1
1.1.2. Significance of stimuli responsive hydrogels 2
1.1.3. Use of click chemistry as a tool for hydrogel fabrication 4
Chapter 2: Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application 5
2.1. Introduction 5
2.2. Experimental 10
2.2.1. Materials 10
2.2.2. Instruments 14
2.3. Preparation of precursors for hydrogel formulation 14
2.3.1. Preparation of precursors for hydrogel formulation 14
2.3.2. Determination of the free-amine content of gelatin and the degree of substitution of Gel-Nb 15
2.4. Formulation of hydrogel 17
2.5. Characterization 18
2.5.1. Rheological properties of gelatin hydrogels 18
2.5.2. The swelling study of gelatin hydrogels 18
2.5.3. Morphology of gelatin hydrogels 18
2.5.4. The drug loading and release experiments 19
2.5.5. In vitro cytocompatibility analysis of the precursors and prepared hydrogels 21
2.5.6. Anti-cancer activity of the DOX-encapsulated hydrogels 21
2.5.7. Fluorescence based live/dead assay 21
2.5.8. Degradation studies of the hydrogels 22
2.5.9. Statistical analysis 22
2.6. Results and Discussion 23
2.6.1. Synthesis of Gel-Nb 23
2.6.2. Preparation and rheological properties of gelatin hydrogels 26
2.6.3. The swelling studies of the hydrogels 31
2.6.4. Morphological analysis 33
2.6.5. In vitro drug loading and release studies 35
2.6.6. In vitro cytocompatibility of Gel-Nb, cross-linker, and hydrogels 44
2.6.7. The anti-cancer effect of formulated hydrogels 46
2.6.8. Fluorescence based live/dead assay 48
2.6.9. Degradation studies of the hydrogels 50
2.7. Conclusion 52
Chapter 3: Facile fabrication of NIR-responsive Alginate/CMC hydrogels derived through IEDDA click chemistry for photothermal-photodynamic anti-tumor therapy 53
3.1. Introduction 53
3.2. Experimental 58
3.2.1. Materials 58
3.2.2. Instruments 58
3.3. Polymer conjugation for the development of hydrogels 58
3.3.1. Coupling of Alg with mTz 58
3.3.2 Conjugation of CMC with norbornene amine 58
3.4. Hydrogel fabrication 62
3.5. Characterization 62
3.5.1. Rheological Analyses of CMC-Alg hydrogels 62
3.5.2. Swelling Properties 63
3.5.3. The structural characteristics of CMC/Alg hydrogels 63
3.5.4. In vitro ROS generation 64
3.5.5. In vitro cytocompatibility analysis of the precursors and hydrogels 64
3.5.6. Fluorescence-based live/dead assay 64
3.5.7. In-vitro photothermal effect 65
3.5.8. Anti-cancer effect of the ICG-loaded hydrogels 65
3.5.9. Statistical analysis 66
3.6. Results and Discussion 66
3.6.1. Synthesis of CMC-Nb 67
3.6.2. Coupling of Alg with methyl tetrazine amine 67
3.6.3. Preparation and mechanical properties of CMC/Alg-derived hydrogels 69
3.6.4. Swelling performance of hydrogels 75
3.6.5. Morphology of hydrogels 77
3.6.6. In vitro ROS detection and photodynamic effect 79
3.6.7. Cytocompatibility analysis 81
3.6.8. Live/dead assay 83
3.6.9. The photothermal effect under NIR irradiation 85
3.6.10. Anti-cancer effect of hydrogels 88
3.7. Conclusion 90
Chapter 4: Conclusion and Summary 91
Bibliography 96
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 스마트그린기술융합공학과
- Authorize & License
-
- Authorize공개
- Embargo2024-02-16
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.