PUKYONG

Synthesis and Characterization of Benzo[b]thiophene (BT) Derivatives for Organic Thin Film Transistors

Metadata Downloads
Alternative Title
유기 박막 트랜지스터를 위한 Benzo[b]thiophene (BT) 유도체의 합성과 특성분석
Abstract
Chapter 1,
액정 상태의 유기 반도체는 온도 변화에 따라 상태와 전기적 성능을 내부적으로 조절할 수 있다는 특성을 지니고 있어 유기 박막 트랜지스터 (OTFT)분야에서 상당한 관심을 받고 있다. 일반적으로 액정 반도체는 견고한 이방성 코어와 유연한 체인으로 이루어지는 구조적 특징을 가지고 있다. 이 장에서 우리는 이방성을 띄는 6-(thiophen-2-yl)benzo[b]thiophene (T-BT(6)) 골격에 티오펜 링과 옥틸 체인을 덧붙여 액정 상태의 반도체 물질을 합성했다. 조사된 T-BT(6) 유도체 중에서도, 물질 3은 SmE 상을 띄면 서 뚜렷한 액정상태의 특성을 보였다. T-BT(6) 유도체들의 박막 특성 뿐 아니라 광학, 열적 및 전기적 특성을 조사했다. T-BT(6) 화합물들은 top-contact/bottom-gate OTFT의 활성층으로 용액 공정을 통해 사용되었다. 특히, 낮은 온도 (30 ℃)에 서 열처리된 액정형태의 T-BT(6) 박막(물질 3)은 0.025 cm^2/Vs의 정공 이동도와 10^6이상의 전류 on/off 비율을 나타냈다. 이러한 결과는 SmE상에서 70 ℃에서 열처리된 샘플과 비교했을 때 10배 향상된 결과를 나타내며, 전이 상태에 해당되는 130 ℃에서 열처리된 샘플의 성능과 비교했을 땐 약 두 배의 향상결과를 보였다. 이러한 연구 결과는 T-BT(6) 유도체를 p-channel 물질로 사용함에 따라 액정 반도체 의 혁신적인 개발로의 중요한 진전을 나타낸다.

Chapter 2,
이 장에서는 benzo[b]thiophene 유도체를 기반으로 4개의 새로운 유기 반도체를 합성했으며, 이들은 유기 필드효과 트랜지스터 (OFET)의 활성층으로 특성화되어 서로 다른 이성질체의 전기적 성능과 함 께, 티오펜과 벤조-티오펜(BT) 작용기의 영향을 알아보기 위해 분석되었다. Top-contact/bottom-gate OFET는 용액공정방법을 통해 제작되었으며, p-channel 특성을 나타냈다. 특히, BT 구조 대신 티오펜 링이 치환된 물질 4는 최대 0.055 cm^2/Vs의 이동도와 2.5×10^7의 높은 전류 on/off 비율을 보였다. 박막의 미세 구조 및 표면 형태는 X선 회절 (XRD) 및 주사탐침현미경 (AFM)을 통해 분석했으며, 이는 박막의 전기적 성능 차이에 기여하는 요소를 조사하기 위해 수행되었다.

Chapter 3,
이 장에서는 T-BT의 구조 이성질체로써 BT 구조에서 티오펜이 치환된 위치로 5번 위치의 T-BT(5)과 6번 위치의 T-BT(6)을 설계하고, 이를 기반으로 하는 7개의 새로운 저분자 유기 반도체 물질을 Stille 커플링 반응을 통해 성공적으로 합성하였다. 또한, 이들의 열적, 광학적, 전기화학적 특성을 분석함으로써 두 가지 다른 코어에 대한 동일한 작용기를 가진 물질들의 구조에 따른 특성(structure-properties)을 조사하였다. 이 연구 결과를 통하여 benzo[b]thiophene에서의 티오펜의 결합 위치가 분자의 전기적 특성 에 중요한 영향을 미친다는 것을 알 수 있었다. 모든 화합물은 p-channel 특성을 나타냈고, 이 중에서 물질 14는 0.018 cm^2/Vs의 가장 높은 정공이동도와 10^6 이상의 전류 on/off 비율을 나타냈다.|In chapter 1,
Liquid crystalline organic semiconductors have garnered significant attention in the realm of organic thin-film transistors (OTFTs) due to their inherent controllability of phase and electrical properties with temperature variations. Typically, liquid crystalline semiconductors possess distinct structures comprising rigid anisotropic cores and flexible chains. Here, we sought to identify liquid crystalline semiconductor materials by appending a thiophene ring and octyl chain to the anisotropic 6-(thiophen-2- yl)benzo[b]thiophene (T-BT(6)) backbone. Among the investigated T-BT(6) derivatives, the compound 3 featuring additional thiophene ring and octyl chains on both sides exhibited pronounced liquid crystalline characteristics, specifically the SmE phase. The optical, thermal, and electrical characteristics as well as thin film properties of the T-BT(6) derivatives were investigated. The T-BT(6) compound was employed through solution-shearing as an active layer for top-contact/bottom-gate OTFTs. The liquid-crystalline T-BT(6) thin film annealed at low temperature (30 ℃) showed hole mobility as high as 0.025 cm^2/Vs and current on/off ratio of >10^6. This results in a significant enhancement by an order of magnitude compared to the sample annealed at 70 ℃ in the SmE phase, and nearly a two-fold improvement compared to the performance observed in the sample annealed at 130 ℃ in the transition phase. The utilization of the T-BT(6) derivative as a p-channel material represents a significant step toward the development of novel liquid crystalline semiconductors.

In chapter 2,
In this study, four new organic semiconductors based on benzo[b]thiophene derivatives were synthetized and characterized as active layer of organic field-effect transistors (OFETs) to investigate electrical performance of different isomers and influence of thiophene and benzene-thiophene (BT) moieties. The top-contact/bottom- gate OFETs were fabricated via solution-shearing methods, exhibiting p-channel activity. In particular, compound 4 which has thiophene ring without additional BT moiety showed highest mobility up to 0.055 cm^2/Vs and current on/off ratio of 2.5×10^7. The microstructure and surface morphology of the thin film were analyzed by X-ray diffraction (XRD) and atomic force microscopy (AFM) to examine the factors contributing to the difference in electrical performance of devices.

In chapter 3,
Seven new small molecular OSCs based on the structural isomer of T-BT, specially 5- position (T-BT(5)) and 6-position (T-BT(6)) were successfully synthesized using Stille coupling reactions. Through the characterization of their thermal, optical, and electrochemical properties, the structure-properties relationships of compounds with the same functional group but positioned differently have been also examined. Finally, our findings indicate that the position of thiophene on benzo[b]thiophene significantly influences the molecular electronic characteristics. All of compounds exhibited p-channel activity under ambient condition. Among them, compound 14 showed a hole carrier mobility of 0.018 cm^2/Vs and current on/off ratio of >10^6
Author(s)
안지해
Issued Date
2024
Awarded Date
2024-02
Type
Dissertation
Publisher
국립부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/33627
http://pknu.dcollection.net/common/orgView/200000735894
Alternative Author(s)
JiHae Ahn
Affiliation
국립부경대학교 대학원
Department
대학원 스마트그린기술융합공학과
Advisor
서성용(SungYong Seo)
Table Of Contents
Chapter 1. Solution-Processable Liquid Crystalline Organic Semiconductors Based on 6-(Thiophen-2-yl)benzo[b]thiophene for Organic Thin-Film Transistors 1
1.1. Introduction 1
1.2. Experimental details 6
1.2.1. Materials and Methods 6
1.2.2. Synthesis 7
1.2.2.1. Synthesis of 6-(5-octylthiophen-2-yl)benzo[b]thiophene (1) 7
1.2.2.2. Synthesis of 2-iodo-6-(5-octylthiophen-2-yl)benzo[b]thiophene (1a) 7
1.2.2.3. Synthesis of 6-(5-octylthiophen-2-yl)-2-(thiophen-2-yl)benzo[b]thiophene (2) 8
1.2.2.4. Synthesis of 2,6-bis(5-octylthiophen-2-yl)benzo[b]thiophene (3) 9
1.2.3. Theoretical Calculation 10
1.2.4. Device Fabrication 10
1.2.5. Device and Film Characterization 11
1.3. Results and Discussion 13
1.3.1. Synthesis 13
1.3.2. Optical properties 15
1.3.3. Electrochemical properties 16
1.3.4. Theoretical calculation 19
1.3.5. Thermal and crystalline properties 21
1.3.6. Thin film transistor characterization 25
1.3.7. Thin-film microstructure and morphology 28
1.4. Conclusion 31
Chapter 2. Solution Processable Benzo[b]thiophene Derivatives as Small Molecular Organic Semiconductors for Organic Field Effect Transistors 32
2.1. Introduction 32
2.2. Experimental 37
2.2.1. Materials and Methods 37
2.2.2. Synthesis 37
2.2.2.1. Synthesis of 6-([2,2’-bithiophen]-5-yl)benzo[b]thiophene (4) 37
2.2.2.2. Synthesis of 5-([2,2’-bithiophen]-5-yl)benzo[b]thiophene (5) 38
2.2.2.3. Synthesis of 2,5-bis(benzo[b]thiophen-6-yl)thiophene (6) 39
2.2.2.4. Synthesis of 2,5-bis(benzo[b]thiophen-5-yl)thiophene (7) 39
2.2.3. Theoretical Calculation 40
2.2.4. Device Fabrication and Characterization 40
2.3. Results and Discussion 42
2.3.1. Synthesis 42
2.3.2. Thermals, optical and electrochemical performance 44
2.3.3 Theoretical calculation 50
2.3.4. Organic field-effect transistor characterization 53
2.3.5. Thin-film microstructure and morphology 56
2.4. Conclusion 60
Chapter 3. Design and Characteristic the Structural Isomer of Benzo[b]thiophene Derivatives for Organic Thin-Film Transistors 61
3.1. Introduction 61
3.2. Experimental 65
3.2.1. Materials and Methods 65
3.2.2. Synthesis 66
3.2.2.1. Synthesis of 5-(5-octylthiophen-2-yl)benzo[b]thiophene (8) 66
3.2.2.2. Synthesis of 2-iodo-5-(5-octylthiophen-2-yl)benzo[b]thiophene (8a) 67
3.2.2.3. Synthesis of 5-(5-octylthiophen-2-yl)-2-(thiophen-2-yl)benzo[b]thiophene (9) 67
3.2.2.4. Synthesis of 2,5-bis(5-octylthiophen-2-yl)benzo[b]thiophene (10) 68
3.2.2.5. Synthesis of 5-(thiophen-2-yl)benzo[b]thiophene (11) 69
3.2.2.6. Synthesis of 5-(5-bromothiophen-2-yl)benzo[b]thiophene (11a) 70
3.2.2.7. Synthesis of 6-(thiophen-2-yl)benzo[b]thiophene (12) 70
3.2.2.8. Synthesis of 6-(5-bromothiophen-2-yl)benzo[b]thiophene (12a) 71
3.2.2.9. Synthesis of 5-(5'-octyl-[2,2'-bithiophen]-5-yl)benzo[b]thiophene (13) 72
3.2.2.10. Synthesis of 6-(5'-octyl-[2,2'-bithiophen]-5-yl)benzo[b]thiophene (14) 72
3.2.3. Theoretical Calculation 74
3.2.4. Device Characterization 74
3.3. Results and Discussion 76
3.3.1. Synthesis 76
3.3.2. Thermal and optical properties 78
3.3.3. Electrochemical properties 83
3.3.4. Theoretical calculation 86
3.3.5. Thin-film transistor characterization 90
3.4. Conclusion 93
References 94
APPENDIX 110
Degree
Master
Appears in Collections:
대학원 > 스마트그린기술융합공학과
Authorize & License
  • Authorize공개
  • Embargo2024-02-16
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.