전기자동차 배터리 팩 케이스 용 A6061-T6의 균열무해화 평가
- Abstract
- As a solution to the problem of global warming, research and development of eco-friendly electric vehicles is being actively conducted. In particular, efforts are being made to reduce air pollution by using electricity or hydrogen as energy sources for electric vehicles to reduce their weight. Battery packs for electric vehicles are made of aluminum to reduce their weight. Aluminum is a useful material for solving low-carbon and recyclable problems. This is because aluminum can be used to save fuel through weight reduction, and can be recycled when scrapped or dismantled. If the weldability and fatigue properties are improved through friction stir welding (FSW) and shot peening (SP), it would be effective to apply aluminum to structural materials subjected to variable stresses. First, in terms of the mechanical properties of A6061-T6 through FSW and SP, the Vickers hardness, tensile strength, and yield stress were all smaller than those of the base metal (BM) specimen. As the heat input of the FSW test specimen increased, the nugget zone (NZ) area expanded, and there was a difference in the hardness by area. The mechanical properties were not proportional to the heat input, and the thermomechanically affected zone (TMAZ) on the advancing side (AS) was the weakest under all the conditions. This is because the material flow speed increased on the AS in the direction of the welding progress and tool rotation, forming a clear boundary with the mechanical properties. Second, using A6061-T6 for an electric vehicle battery pack, we developed electrical discharge machining (EDM) cracks with a crack depth (a) ranging from 0.1 to 0.3 mm. SP was performed after EDM, and a four-point bending fatigue test was conducted. The surface of the SP specimen was rough regardless of the SP time. Moreover, it was more than twice as rough as that of the BM specimen. The fatigue limits of the BM and SP BM specimens were similar. However, the BM crack specimen decreased as the crack depth increased, and the SP BM crack specimen exhibited a fatigue limit similar to that of the SP BM specimen at approximately a=0.2mm. Notably, harmless cracks with crack depths of approximately a=0.2mm could be observed with SP. The size of the harmless crack was evaluated from the relationship between the stress intensity and threshold stress intensity factors of the SP BM crack specimen. The harmless crack size was determined by the crack depth (a), and the influence of aspect ratio was negligible in the diagram of harmless crack size evaluation Third, recently, a technique has been developed to render harmless surface cracks, which reduces the fatigue limit of metals by 20-60% by the effects of compressive residual stress induced by SP. This technique is called surface crack nondamaging technology. For the purpose of contributing to reliability improvement of high strength steel equipment by surface crack non-damaging technology, the following research was carried out. The tensile residual stress of FSW was added by SP, resulting in a larger compressive residual stress than that of the BM. The effect of the surface crack aspect ratio on the maximum harmless crack depth (a_hml) of A6061-T6 is evaluated for the residual stress distribution. The detectable depth was evaluated in terms of the relationship between a_hml and the maximum detectable crack depth (a_NDI) by non-destructive inspection.
- Author(s)
- 박상현
- Issued Date
- 2024
- Awarded Date
- 2024-02
- Type
- Dissertation
- Publisher
- 국립부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/33765
http://pknu.dcollection.net/common/orgView/200000738898
- Alternative Author(s)
- Sang-Hyun Park
- Affiliation
- 국립부경대학교 대학원
- Department
- 대학원 재료공학과
- Advisor
- 남기우
- Table Of Contents
- 제1장 서론 1
1.1 연구의 배경 및 목적 2
1.2 피로파괴 과정과 표면 결함 무해화 개념 5
1.2.1 피로파괴 과정과 피로파괴 저항 인자 5
1.2.2 표면결함 무해화 개념 12
1.2.3 피로한도와 피로수명 15
1.3 금속 접합 17
1.3.1 금속 용접재 계면 평가의 중요성 19
1.3.2 마찰 교반 용접의 원리와 특징 21
1.3.3 Shot peening(SP) 25
1.4 본 연구에 관한 기존 연구 개요 26
1.4.1 표면결함이 피로한도에 미치는 영향에 관한 연구 26
1.4.2 표면개질에 의한 피로한도 향상에 관한 연구 27
1.4.3 표면결함의 무해화에 관한 연구 28
1.5 본 논문의 구성과 개요 29
참고문헌 30
제2장 기계적 특성 평가 38
2.1 서언 39
2.2 재료 및 실험 방법 40
2.2.1 재료 및 시험편 40
2.2.2 조직 관찰 45
2.2.3 기계적 시험 46
2.3 결과 및 고찰 47
2.3.1 조직 관찰 47
2.3.2 마이크로 비커스 경도 50
2.3.3 인장 특성 52
2.4 결언 57
참고문헌 58
제3장 전기자동차 배터리 팩 케이스용 A6061-T6의 무해한
균열 크기 평가 61
3.1 서언 62
3.2 재료 및 실험방법 64
3.2.1 재료 및 시험편 64
3.2.2 쇼트 피닝(Shot peening, SP) 67
3.2.3 표면 조도 측정 69
3.2.4 피로 특성 평가 70
3.2.5 균열시험편의 피로한도 및 하한계응력확대계수 평가 71
3.2.6 파괴역학에 의한 무해화 균열 크기 평가 74
3.2.7 결함 검출 확대 평가 76
3.3 결과 및 고찰 78
3.3.1 하한계응력확대계수 및 피로한도의 결정 78
3.3.2 SP시험편의 표면거칠기 및 피로수명 79
3.3.3 SP시험편의 잔류응력 82
3.3.4 SP에 의한 피로한도와 표면균열 무해화 84
3.3.5 무해화 균열 크기의 파괴역학적 검토 88
3.3.6 SP에 의한 표면균열 무해화 기술의 재료 유지보수성 적용 90
3.3.7 무해화 가능 균열 깊이 선도 92
3.4 결언 94
참고문헌 95
제4장 표면균열 무해화기술의 응용에 의한 마찰교반용접한
A6061-T6의 피로특성에 대한 신뢰성 평가 100
4.1 서언 101
4.2 재료 및 실험방법 103
4.2.1 재료 및 시험편 105
4.2.2 SP 및 잔류응력 측정 106
4.2.3 피로 특성 평가 108
4.2.4 FSWC의 피로한도 및 하한계응력확대계수 평가 109
4.2.5 결함검출 확률 114
4.3 결과 및 고찰 116
4.3.1 FSWBM 및 FSWC의 피로한도 116
4.3.2 FSWBM의 잔류응력 118
4.3.3 SP에 의한 FSW시험편의 피로한도와 표면균열 무해화 120
4.3.4 무해화 균열 크기의 파괴역학적 검토 125
4.3.5 SP에 의한 표면균열 무해화 기술의 재료 유지보수성 적용 127
4.3.6 무해화 가능 균열깊이 선도 129
4.4 결언 131
참고문헌 133
제5장 결론 138
발표 논문 141
감사의 글 144
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 재료공학과
- Authorize & License
-
- Authorize공개
- Embargo2024-02-16
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.