PUKYONG

화력발전소 Bottom Ash가 첨가된 기능성 폴리우레탄 폼의 기계적 강도 개선 및 UV 내성 향상 연구

Metadata Downloads
Abstract
Polyurethane is used in various commercial and technical applications due to its high strength, chemical resistance, good processability, and favorable mechanical properties. Specifically, in construction and maritime applications, polyurethane foam serves as a thermal insulator, necessitating high mechanical strength for diverse uses. However, a drawback of polyurethane is its tendency to yellow upon exposure to UV radiation, limiting its outdoor applications due to potential discoloration and degradation. To address these challenges, ongoing studies explore the incorporation of UV absorbers, carbon black, and Hindered Amine Light Stabilizers (HALS). In this study, we introduced mask fibers into polyurethane foam to enhance its compressive strength. Disposable masks were used as a fiber source, given the heightened interest in recycling these waste products, which significantly contribute to environment pollution. The polyurethane foam with mask fibers was produced by stirring urethane, bottom ash, expanded graphite, and mask fibers (different wt%) at 2500 rpm for 30 seconds, followed by drying at 50 oC. Thermal conductivity testing revealed that the polyurethane foam with mask fibers exhibited approximately 15% higher thermal conductivity than the original polyurethane foam. The compressive strength test confirmed that the strength increased with the amount of mask fibers addition, reaching a maximum of 0.274 MPa at 2 wt.%, representing a 40% increase compared to the original polyurethane foam. On the other note, for improve yellowing resistance, we blended TiO2 with polyurethane. The polyurethane foam with TiO2 was produced by stirring urethane, bottom ash, expanded graphite, anatase TiO2, and rutile TiO2 at 3000 rpm for 15 seconds, followed by drying at 50 oC. Thermal conductivity testing showed that the polyurethane foam with anatase TiO2 experienced a slight decrease or no significant change in thermal conductivity compared to the original polyurethane foam. In contrast, the polyurethane foam with rutile TiO2 exhibited a maximum increase of about 20%. Compressive strength testing revealed different outcomes: 0.784 MPa (86% increase) for the polyurethane foam with anatase TiO2 and 0.686 MPa (62% increase) for the polyurethane with rutile TiO2. UV-Vis measurements demonstrated increased absorption in the UV region for both anatase and rutile TiO2 added polyurethane foams. Additionally, after 24 hours of UV lamp irradiation, it was confirmed that the polyurethane foam with rutile TiO2 exhibited greater improvement in yellowing resistance compared to the polyurethane foam with anatase TiO2. In conclusion, we found that incorporating mask fibers into polyurethane can significantly enhances compressive strength at a low cost. Conversely, adding TiO2 to polyurethane enhances not only improves yellowing resistance but also enhances its physical and mechanical properties.
Author(s)
유지훈
Issued Date
2024
Awarded Date
2024-02
Type
Dissertation
Keyword
Bottom Ash, 폴리우레탄, UV, 기계적 강도
Publisher
국립부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/33826
http://pknu.dcollection.net/common/orgView/200000733276
Alternative Author(s)
YOOJIHOON
Affiliation
국립부경대학교 대학원
Department
대학원 인공지능융합학과
Advisor
양현경
Table Of Contents
1. 서론 1
1.1 연구배경 1
1.2 연구목적 2
1.2.1 기계 강도 개선 2
1.2.2 UV 내성 향상 3
2. 배경이론 6
2.1 폴리우레탄 6
2.1.1 폴리우레탄 6
2.1.2 폴리우레탄 폼 11
2.2 Bottom Ash 16
2.2.1 Bottom Ash 특성 16
2.2.2 Bottom Ash를 첨가한 폴리우레탄 폼 18
2.3 일회용 폐마스크 19
2.3.1 일회용 마스크의 구조와 성분 19
2.3.2 일회용 마스크의 소비량 21
2.3.3 일회용 폐마스크의 재활용 현황 29
2.4 폴리우레탄 황변 현상 33
2.4.1 황변 현상 33
2.4.2 UV 안정제 37
3. 실험방법 42
3.1 기계적 강도 개선 실험 42
3.1.1 일회용 폐마스크를 첨가한 폴리우레탄 폼 제작 42
3.2 UV 내성 향상 실험 45
3.2.1 TiO2 분말을 첨가한 폴리우레탄 폼 제작 45
3.3 물성 분석 47
3.3.1 내부 셀 형상분석 47
3.3.2 기계적 강도 분석 49
3.3.3 단열 특성 분석 51
3.3.4 UV-Vis 흡광도 분석 53
4. 실험결과 및 특성 분석 55
4.1 기계적 강도 개선 55
4.1.1 일회용 마스크의 특성 분석 55
4.1.2 폴리우레탄 폼의 제작 조건 57
4.1.3 발포 상태 분석 61
4.1.4 단열 특성 분석 63
4.1.5 기계적 강도 분석 65
4.1.6 내부 셀 분석 67
4.2 UV 내성 향상 70
4.2.1 폴리우레탄 폼의 제작 조건 70
4.2.2 발포 상태 분석 72
4.2.3 UV 조사 74
4.2.4 단열 특성 분석 76
4.2.5 기계적 강도 분석 79
4.2.6 내부 셀 분석 82
4.2.7 UV-Vis 흡광도 분석 85
5.결론 88
Degree
Master
Appears in Collections:
대학원 > 인공지능융합학과
Authorize & License
  • Authorize공개
  • Embargo2024-02-16
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.