p(-2,3,7)의 비매듭터널의 유도
- Alternative Title
- Derivation of unknotting tunnels for p(-2,3,7)
- Abstract
- 매듭 p(-2,3,7)의 서로 다른 두 (1,1)-분해(decomposition)에 대한 이원 분지 피복 공간의 정이면체 대칭성(dihedral symmetry of the double branched covering)을 이용하여 4개의 비매듭 터널(unknotting tunnel)을 얻는 과정을 상세히 밝힌다.
This thesis is to explicitly show how to derive the four unknotting tunnels from the two (1,1)-decompositions of p(-2,3,7) using dihedral symmetry of the double branched covering.
This thesis is collect some basic concepts and definitions for study of tunnel number one knots including the dihedral branched covering space of a 2-bridge theta curve studied in H.J.Song, Morimoto-Sakuma-Yokota[9].
- Author(s)
- 최미영
- Issued Date
- 2007
- Awarded Date
- 2007. 8
- Type
- Dissertation
- Keyword
- unknotting tunnels knot p(-2 3 7) 비매듭터널 정이면체
- Publisher
- 부경대학교 교육대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/3741
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001953678
- Alternative Author(s)
- Choi, Mi-Young
- Affiliation
- 부경대학교 교육대학원
- Department
- 교육대학원 수학교육전공
- Advisor
- 송현종
- Table Of Contents
- 1. Introduction = 1
2. Preliminaries = 2
2.1 some basic concepts for study of tunnel number one knots in S³ = 2
2.2 the dihedral branched covering spaces of 2-bridge θ-curves = 6
3. Main Results = 14
4. Appendix = 19
References = 26
- Degree
- Master
-
Appears in Collections:
- 교육대학원 > 수학교육전공
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.