PUKYONG

p(-2,3,7)의 비매듭터널의 유도

Metadata Downloads
Alternative Title
Derivation of unknotting tunnels for p(-2,3,7)
Abstract
매듭 p(-2,3,7)의 서로 다른 두 (1,1)-분해(decomposition)에 대한 이원 분지 피복 공간의 정이면체 대칭성(dihedral symmetry of the double branched covering)을 이용하여 4개의 비매듭 터널(unknotting tunnel)을 얻는 과정을 상세히 밝힌다.
This thesis is to explicitly show how to derive the four unknotting tunnels from the two (1,1)-decompositions of p(-2,3,7) using dihedral symmetry of the double branched covering.
This thesis is collect some basic concepts and definitions for study of tunnel number one knots including the dihedral branched covering space of a 2-bridge theta curve studied in H.J.Song, Morimoto-Sakuma-Yokota[9].
Author(s)
최미영
Issued Date
2007
Awarded Date
2007. 8
Type
Dissertation
Keyword
unknotting tunnels knot p(-2 3 7) 비매듭터널 정이면체
Publisher
부경대학교 교육대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/3741
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001953678
Alternative Author(s)
Choi, Mi-Young
Affiliation
부경대학교 교육대학원
Department
교육대학원 수학교육전공
Advisor
송현종
Table Of Contents
1. Introduction = 1
2. Preliminaries = 2
2.1 some basic concepts for study of tunnel number one knots in S³ = 2
2.2 the dihedral branched covering spaces of 2-bridge θ-curves = 6
3. Main Results = 14
4. Appendix = 19
References = 26
Degree
Master
Appears in Collections:
교육대학원 > 수학교육전공
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.