동적 베이스망 프레임워크 기반의 양손 제스쳐 인식
- Alternative Title
- Two Hands Gesture Recognition Based on Dynamic Bayesian Network Framework
- Abstract
- It is natural to use hand gestures in interacting with computers because hand gestures are freer in movements and much more expressive than any other body parts. In this paper, we define and recognize ten hand gestures including two-hand gestures as well as one-hand gestures. Skin blobs in a frame are segmented by two different skin color models combined. Each skin blob is modeled with a Gaussian model. For the tracking of the skin blobs, we exploit optical flows computed between the blobs in the previous frame and those in the current frame. The new mean of the Gaussian model for each blob in the current frame is predicted using the optical flows which give the motion information of each blob from the previous frame to the current frame. The motion of hands is defined the change of the mean of each Gaussian and the relative position between two hands, each hand and a face. A new gesture recognition model is proposed based on the dynamic Bayesian network framework which is relatively easy to represent the relationship among features and to incorporate new features or information to a model. Experimental results showed high recognition rate up to 99.59% with our small dataset in isolated gesture recognition and 84% of the detection rate, 76.36% of reliability was obtained in continuous gesture recognition. The proposed model and techniques are believed to have a sufficient potential for successful applications to other hand gestures recognition such as sign languages.
- Author(s)
- 석흥일
- Issued Date
- 2007
- Awarded Date
- 2007. 8
- Type
- Dissertation
- Keyword
- 동적 베이스망 제스쳐 인식 프레임워크 양손 제스쳐 영상처리
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/3799
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001953751
- Alternative Author(s)
- Suk, Heung-Il
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 컴퓨터공학과
- Advisor
- 신봉기
- Table Of Contents
- 1. 서론 = 1
2. 시스템 구성 = 5
3. 얼굴과 손 영역에 대한 검출 및 추적 = 6
3.1 피부 영역 검출(Skin Detection) = 6
3.2 영역 추적(Blob Tracking) = 8
4. 손 동작 정의 및 특징 추출 = 11
4.1 손 동작 정의 = 11
4.2 특징 추출(Feature Extraction) = 12
5. 인식 모델 = 15
5.1 동적 베이스망(Dynamic Bayesian Netowrk: DBN) = 15
5.2 제안하는 양손 제스쳐 모델 = 17
5.3 추론(Inference) = 19
5.4 학습(Learning) = 25
6. 실험 결과 및 고찰 = 27
6.1 실험 환경 = 27
6.2 영상 처리 및 특징 추출 = 27
6.3 독립 제스쳐 인식(Isolated Gesture Recognition) = 29
6.3.1 방향 코드만을 이용한 coupled HMM = 29
6.3.2 두 손의 상대적 위치 정보를 추가한 DBN = 31
6.3.3 얼굴과 각 손의 상대적 위치 정보를 추가한 DBN = 32
6.3.4 은닉 노드 상태 디코딩(Hidden State Decoding) = 34
6.4 연속 제스쳐 인식(Continuous Gesture Recognition) = 36
6.4.1 연속 제스쳐 인식을 위한 네트워크 구조 = 36
6.4.2 연속 제스쳐 인식 알고리즘 = 38
6.4.3 연속 제스쳐 인식 성능 = 42
7. 결론 및 향후 과제 = 44
참고 문헌 = 46
- Degree
- Master
-
Appears in Collections:
- 산업대학원 > 컴퓨터공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.