PC12 세포에서 아밀로이드 베타 펩타이드로 유도된 독성에 대한 식용 갈조류 대황의 신경보호 효과
- Alternative Title
- Neuroprotective effects of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells
- Abstract
- Alzheimer’s disease (AD) is the most general neurodegenerative disease in humans that is characterized by neuronal degeneration and senile plaques. Amyloid beta peptide (Aβ) induced neurocytotoxicity is the important pathway of neuronal cell death which might play a crucial role in the development of AD. The mechanism by which Aβ induces cell death is not clear yet. However, it has been suggested that one of the mechanisms is oxidative stress produced by reactive oxygen species (ROS), reactive nitrogen species (RNS). Aβ induced toxicity is also related with the disturbance of calcium (Ca2+) homeostasis. Eisenia bicyclis (Kjellman) Setchell is a perennial brown alga, belonging to the family Laminariaceae. It is widely distributed in Korea and Japan and especially abundantly produced in Ulleung and Dok Island in Korea. This alga is frequently used as a dietary alternative of Laminaria japonica, along with Ecklonia stolonifera and Ecklonia cava. This species has a lot of bioactive components, including phlorotannins, polysaccharides, pyropheophytin, lipids, tripeptides, and oxylipins. Particularly phlorotannins, produced by polymerization of phloroglucinol (1, 3, 5-trihydroxybenzene), have been reported for various biological activities such as antioxidant, anti-diabetic complication, antitumor, hepatoprotective, anti-plasmin inhibitory, tyrosinase inhibitory, anti-inflammatory, nitrite-scavenging, anti-skin aging, anti-cholinesterase, anti-hyperlipidemic, anti-allergic, angiotensin converting enzyme-I inhibitory, β-secretase1 inhibitory, protein tyrosine phosphatase 1B, and α-glucosidase inhibitory activities. However, the neuroprotective effects of E. bicyclis on Aβ induced neurocytotoxicity had not been investigated. In the present study, the neuroprotective effects of methanolic (MeOH) extract and its solvent soluble fractions including dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water (H2O) from E. bicyclis were investigated against Aβ induced neurocytotoxicity, as well as inhibitory activities of intracellular ROS, peroxynitrite (ONOO¯) and Ca2+ in PC12 cells. Exposure of Aβ to PC12 cells caused significant cell death and increased the number of apoptotic cells. Treatment of 2.5 μM Aβ alone induced about 50% cell death compared with control. However, the addition of 20 μg/ml MeOH extract and its two subfractions, EtOAc and n-BuOH fractions from E. bicyclis increased cell viability to 75.06, 104.30 and 82.76%, respectively. On the other hand, the CH2Cl2 and H2O fractions had no obvious effects. In particular, the EtOAc fraction restored cell viability to almost the normal level, indicating that the EtOAc fraction showed the highest neuroprotective effects against Aβ induced neurocytotoxicity among the tested fractions and has neuroprotective constituents. Therefore, the EtOAc fraction was selected and chromatographed over a silica, RP-18, and Sephadex LH-20 column to yield active compounds. Six phlorotannins, including phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofucofuroeckol-A (4), dieckol (5), and 7-phloroeckol (6) were isolated from the EtOAc fraction of E. bicyclis and their chemical structures were elucidated by spectral analysis. Among six phlorotannins, 4, 5, and 6 significantly decreased Aβ induced cell death. 4, 5, and 6 with no obvious toxic concentration (5, 20, and 30 μM, respectively) increased cell viability by 15, 20, and 40%, respectively. The MeOH extract and its fractions from E. bicyclis, mainly EtOAc fraction, and isolated phlorotannins from active EtOAc fraction also inhibited the level of intracellular ROS and ONOO¯, indicating the neuroprotective effects may be mediated through reduced intracellular ROS and ONOO¯ generation. The EtOAc fraction manifested potent t-BHP-induced intracellular ROS and ONOO¯ generation inhibitory activity with IC50 values of 1.85 ± 0.03 and 3.93 ± 0.51 μg/ml, respectively, followed by the n-BuOH fraction with IC50 values of 2.25 ± 0.11 and 7.49 ± 0.58 μg/ml, respectively. Among the compounds from EtOAc fraction, 4, 5, and 6 significantly decreased t-BHP-induced intracellular ROS generation. 5 and 6 also significantly decreased t-BHP-induced intracellular ONOO¯ generation, while 4 had cytotoxicity in tested concentrations. Incubation of PC12 cells with the fractions and the compounds from E. bicyclis which have relatively high neuroprotective effects also significantly inhibited Aβ-induced ROS generation. Furthermore, since the mechanism of toxicity of Aβ may be mediated by elevations of Ca2+, the study examined whether the phlorotannins affected the Aβ-induced increase of Ca2+. 3, 4, and 6 decreased the elevations of Ca2+ in a dose dependent manner, and especially pretreatment with 6 (30 μM) reduced intracellular Ca2+ to the normal level. Thus, the results of the present study imply that E. bicyclis and its active components attenuated the oxidative stress and reduced neuronal cell death, suggesting that it may be used as a dietary neuroprotective agent in AD.
- Author(s)
- 안보라
- Issued Date
- 2012
- Awarded Date
- 2012. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/8884
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001965765
- Alternative Author(s)
- Ahn, Bo Ra
- Affiliation
- 부경대학교
- Department
- 대학원 식품생명과학과
- Advisor
- 최재수
- Table Of Contents
- LIST OF SCHEMES ------------------------------------------------------------------ ⅰ
LIST OF TABLES --------------------------------------------------------------------- ⅱ
LIST OF FIGURES ------------------------------------------------------------------ ⅲ
ABBREVIATIONS ------------------------------------------------------------------- ⅳ
LIST OF SYMBOLS ----------------------------------------------------------------- ⅴ
ABSTRACT ---------------------------------------------------------------------------- ⅵ
Ⅰ. 서론 --------------------------------------------------------------------------------- 1
Ⅱ. 재료 및 실험방법 --------------------------------------------------------------- 7
1. 재료 -------------------------------------------------------------------------------- 7
2. 시약 및 기기 ------------------------------------------------------------------- 7
2-1. 시약 -------------------------------------------------------------------------- 7
2-2. 기기 --------------------------------------------------------------------------- 8
2-3. 실험 세포주 ---------------------------------------------------------------- 8
3. 실험방법 ------------------------------------------------------------------------- 9
3-1. 추출 및 분획 --------------------------------------------------------------- 9
3-2. 화합물의 분리 ------------------------------------------------------------- 11
3-2-1. EtOAc 분획물의 활성성분 분리 --------------------------------- 11
3-2-2. EtOAc 분획물에서 분리된 성분의 분광학적 성질 ---------- 13
3-3. 세포주의 배양 ----------------------------------------------------------- 17
3-4. 아밀로이드 베타 펩타이드의 aggregation ------------------------- 17
3-5. 세포독성 측정 ------------------------------------------------------------ 17
3-6. 세포보호 효과 측정 ----------------------------------------------------- 17
3-7. 세포내의 ROS 측정 ----------------------------------------------------- 18
3-7-1. Aβ로 유도된 세포내의 ROS 측정 -------------------------------- 18
3-7-2. t-BHP로 유도된 세포내의 ROS 측정 -------------------------- 19
3-8. 세포내의 ONOO¯ 측정 ------------------------------------------------- 21
3-8-1. Aβ로 유도된 세포내의 ONOO¯ 측정 ---------------------------- 21
3-8-2. t-BHP로 유도된 세포내의 ONOO¯ 측정 ---------------------- 22
3-9. 세포내의 Ca2+ 측정 ------------------------------------------------------ 24
3-9-1. Aβ로 유도된 세포내의 Ca2+ 측정 -------------------------------- 24
4. 통계처리 ------------------------------------------------------------------------ 26
Ⅲ. 결과 -------------------------------------------------------------------------------- 27
1. PC12 세포에 대한 세포독성 평가 --------------------------------------- 27
1-1. 아밀로이드 베타 펩타이드의 PC12 세포에 대한 세포독성 평가
---------------------------------------------------------------------------------- 27
1-2. 대황 MeOH 추출물 및 각 분획물들의 PC12 세포에 대한
세포독성 평가 ------------------------------------------------------------- 29
1-3. 대황에서 분리된 화합물들의 PC12 세포에 대한 세포독성 평가
---------------------------------------------------------------------------------- 31
2. PC12 세포에서 Aβ로 유도된 신경독성에 대한 보호 효과 ------- 36
2-1. 대황 MeOH 추출물 및 각 분획물들의 PC12 세포에서 Aβ로
유도된 신경독성에 대한 보호 효과 ------------------------------- 36
2-2. 대황에서 분리된 화합물들의 PC12 세포에서 Aβ로 유도된
신경독성에 대한 보호 효과 ------------------------------------------- 40
3. PC12 세포에서 ROS 생성에 미치는 효과 ------------------------------- 41
3-1. PC12 세포에서 Aβ의 처리가 ROS 생성에 미치는 효과 ------ 41
3-2. 대황 MeOH 추출물 및 각 분획물들의 PC12 세포에서 Aβ와
t-BHP로 유도된 ROS 생성에 미치는 효과 ---------------------- 43
3-3. 대황에서 분리된 화합물들의 PC12 세포에서 Aβ와 t-BHP로
유도된 ROS 생성에 미치는 효과 ---------------------------------- 49
4. PC12 세포에서 ONOO¯ 생성에 미치는 효과 --------------------------- 56
4-1. PC12 세포에서 Aβ의 처리가 ONOO¯ 생성에 미치는 효과 ---- 56
4-2. 대황 MeOH 추출물 및 각 분획물들의 PC12 세포에서 t-BHP로
유도된 ONOO¯ 생성에 미치는 효과 ---------------------- 58
4-3. 대황에서 분리된 화합물들의 PC12 세포에서 t-BHP 로 유도된
ONOO¯ 생성에 미치는 효과 ----------------------------------------- 59
5. PC12 세포에서 Ca2+ 생성에 미치는 효과 ------------------------------ 61
5-1. PC12 세포에서 Aβ의 처리가 Ca2+ 생성에 미치는 효과 ------ 61
5-2. 대황에서 분리된 화합물들의 PC12 세포에서 Aβ로 유도된 Ca2+
생성에 미치는 효과 ---------------------------------------------------- 63
Ⅳ. 고찰 -------------------------------------------------------------------------------- 66
Ⅴ. 요약 -------------------------------------------------------------------------------- 73
Ⅵ. 참고문헌 -------------------------------------------------------------------------- 77
- Degree
- Master
-
Appears in Collections:
- 대학원 > 식품생명과학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.