녹색도시 지역 온실가스와 유해대기오염물질 배출특성과 배출량 산정
- Abstract
- After Kyoto Protocol was adopted for green house gas (GHG) reduction, each nation is stepping up efforts to reduce CO2 of a typical green gas. And also, the management of GHG and hazardous air pollutants (HAPs) is becoming their matter of primary concern.
Therefore, it is very important to make the green city master plan which is minimizing GHG emissions and creating jobs through reorganization of the low-carbon type infrastructure and lifestyle.
So far, GHG has been designated as a "climate․ecosystem change-causing material" not a pollutant in Korea. But now, GHG will be managed as air pollutants because the gas has a harmful influence on national health and environment such as the death by scorching heat, malaria patient increase by a rise in temperature, and ecosystem destruction by a sudden change in habitat environment.
Above all, it is important to emissions estimation correctly to manage the GHG and HAPs.
The estimation method of GHG emissions is based on the type, structure and mechanism of the emissions. Basically, the method should be different by the emissions and are classified into two categories by estimation principle. One is a method of measurement for direct confirm of the GHG emissions. Another is a method of calculation appling emission factor which is a standard number by correlation analysis between activity and amount of the GHG emissions.
The method of measurement has high confidence in accuracy and transparency of the data because of actual measurement using equipment, but it needs comparatively high cost and is dependent on good equipment performance.
On the other hand, the method of calculation is an estimated figure which uses the emission factor converted into activity and amount of the GHG emissions, and the emissions accuracy can be decided on the emission factor.
In actual estimation of emissions, it might be proper that each nation decides application method taking into account conditions of the nation, purpose and cost of the estimation. For example, EU prefers the method of calculation because of their accumulated data over the long term, while USA prefers the method of measurement.
To establish actual management plan of GHG and HAPs, this study carried out direct measurement of the gases concentration and estimation of emissions at Gangneung green city. Also, the estimation of GHG emissions was compared to the emission result by IPCC default value.
As a result, the estimation of HAPs emissions in cement plants was 1,098.94 kg/yr. In road transport, the estimation of HAPs emissions was 1.11 kg/yr in case of LPG and 5,252.08 kg/yr in case of diesel and 765.38 kg/yr in case of gasoline.
The estimation of actual GHG emissions in power plants was 970,498 tonCO2eq/yr accounting for 55% of 1,758,503 tonCO2eq/yr by the default value.
Also, the estimation of actual GHG emissions in the manufacturing industry was 8,461 tonCO2eq/yr that is more than double compare to 4,102 tonCO2eq/yr by the default value.
In case of household heating, the estimation of actual GHG emissions was 173,448 tonCO2eq/yr that is more than 1.6 compare to 102,991 tonCO2eq/yr by the default value.
In case of road transport, the estimation of actual GHG emissions was 304,714 tonCO2eq/yr accounting for 55% of 549,335 tonCO2eq/yr by the default value.
In case of the cement manufacturing industry, the estimation of actual GHG emissions was 4,118,278 tonCO2eq/yr that is more than 1.38 compare to 2,957,895 tonCO2eq/yr by the default value. But the default value including fuel use was 3,861,085 tonCO2eq/yr accounting for 94% of the actual GHG emissions.
The estimation of actual GHG emissions in landfill was 70 tonCO2eq/yr accounting for 5% of 1,548 tonCO2eq/yr by the default value. But the actual GHG emissions including seasonal influence was 669 tonCO2eq/yr accounting for 43% of default value.
The estimation of actual GHG emissions in sewage treatment plants was 0.4 tonCO2eq/yr accounting for 0.03% of 1,188 tonCO2eq/yr by the default value. But the actual GHG emissions including seasonal influence was 15 tonCO2eq/yr accounting for 1% of default value.
In addition, the estimation of actual GHG emissions in waste water disposal plants was 88 tonCO2eq/yr that is more than 1.06 compare to 83 tonCO2eq/yr by the default value. But the actual GHG emissions including seasonal influence was 156 tonCO2eq/yr that is more than 1.88 compare to default value.
It is clear from this study that the major factors for emissions estimation are the emission factor and activity of emissions. Also, the emissions activity can be used reliable data such as statistics of national agencies, while the emission factor can be used effect as a key factor by sampling site and analysis condition.
- Author(s)
- 이종연
- Issued Date
- 2012
- Awarded Date
- 2012. 2
- Type
- Dissertation
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/8964
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001965855
- Alternative Author(s)
- Jong-Yeon Lee
- Department
- 대학원 지구환경공학학ㆍ연협동과정
- Advisor
- 옥곤
- Table Of Contents
- 목 차 ⅰ
List of Tables ⅴ
List of Figures ⅶ
Abstract 1
Ⅰ. 서 론 1
1. 연구배경 1
2. 연구목적 4
Ⅱ. 이론적 고찰 6
1. 국내외 녹색도시 조성현황 6
1.1. 우리나라 녹색도시 현황 6
1.2. 국외 녹색도시 조성현황 7
2. 국내외 온실가스 정책 및 연구현황 9
2.1. 온실가스 정책동향 9
2.1.1. 기후변화 대응을 위한 국제적 노력 9
2.1.2. 온실가스로 인한 기후변화 10
2.2. 온실가스 연구현황 14
2.2.1. 국내 온실가스 연구현황 14
2.2.2. 국외 온실가스 연구현황 17
3. 국내외 유해대기오염물질 관리정책 25
3.1. 국내의 HAPs 관련법규 25
3.1.1. 대기환경보전법 25
3.1.2. 악취방지법 25
3.1.3. 잔류성유기오염물질관리법 25
3.1.4. 유해화학물질관리법 26
3.1.5. 산업안전보건법 26
3.2. 외국의 HAPs 관리정책 28
3.2.1. 미국의 HAPs 관리정책 28
3.2.2. 일본의 HAPs 관리정책 30
3.2.3. 유럽연합의 HAPs 관리정책 32
3.2.4. 영국의 HAPs 관리정책 34
3.2.5. 독일의 HAPs 관리정책 35
3.2.6. 캐나다의 HAPs 관리정책 36
4. PAHs의 물리화학적 특성 38
5. 녹색시범도시 지역의 온실가스 배출특성 41
5.1. 1인당 온실가스 배출특성 41
5.1.1. 1인당 온실가스 배출량 41
5.1.2. 광역지자체와의 배출량 비교(2006년 기준) 42
5.1.3. 기초지자체와의 배출량 비교(2006년) 43
5.2. 단위면적당 온실가스 배출량 45
5.2.1. 강릉시 단위면적당 온실가스 배출량 45
5.2.2. 광역지자체와의 온실가스 총 배출량 비교(2006년) 47
5.2.3. 기초지자체와의 배출량 비교(2006년) 49
Ⅲ. 연구방법 및 내용 50
1. 실측대상 물질 및 업종 50
1.1. 실측대상 물질 50
1.2. 실측대상 업종 50
2. 측정 및 분석 방법 54
2.1. 온실가스 측정 및 분석방법 54
2.1.1. 온실가스 시료채취 54
2.1.2. 온실가스 분석방법 57
2.2. HAPs 측정 및 분석방법 61
2.2.1. 시료채취 방법 61
2.2.2. HAPs 분석방법 65
3. 배출원별 배출농도 69
4. 온실가스 및 유해대기오염물질 배출량 산정절차 및 방법 78
4.1. 배출량 산정절차 78
4.2. 배출량 산정방법 78
4.2.1. 온실가스 배출원별 배출량 산정방법 81
4.2.2. 유해대기오염물질 배출원별 배출량 산정방법 82
Ⅳ. 연구결과 및 고찰 83
1. 부문별 온실가스 배출량 산정 83
1.1. 에너지부문 83
1.1.1. 에너지산업 83
1.1.2. 제조업 및 건설업 85
1.1.3. 기타연소 87
1.1.4. 도로수송 90
1.2. 산업부문 93
1.3. 폐기물부문 96
1.3.1. 매립 96
1.3.2. 하수처리장 102
1.3.3. 폐수처리장 106
2. 주요 배출원에서의 HAPs 배출량 산정 112
2.1. 시멘트 제조업 112
2.2. 도로수송 115
3. 온실가스 실측 배출량 비교 119
3.1. 에너지 부문 121
3.1.1. 에너지 산업 121
3.1.2. 제조업 및 건설업 122
3.1.3. 기타연소(가정난방) 124
3.1.4. 도로수송 126
3.2. 산업부문 129
3.3. 폐기물 부문 132
3.3.1. 매립 132
3.3.2. 하수처리장 134
3.3.3. 폐수처리장 136
4. 연구결과 고찰 138
4.1. IPCC default value 배출계수 문제점 138
4.2. 실측 배출계수의 보완 발전 방안 139
4.3. 온실가스 배출계수의 대응방안 139
4.3.1. 실측을 통한 배출량 산정 139
4.3.2. 실측을 통한 배출계수의 신뢰도 향상 140
Ⅴ. 요약 및 결론 141
1. 온실가스 및 HAPs 배출량 141
2. 실측결과 요약 및 결론 142
3. 온실가스와 HAPs의 연계 통합접근의 중요성 144
참고문헌 146
감사의 글 153
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 지구환경공학연협동과정
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.