PUKYONG

압전세라믹 냉각팬 시스템용 히트싱크 형상에 대한 연구

Metadata Downloads
Alternative Title
Research on heat sink geometries for the piezoelectric cooling fan system
Abstract
In order to enhance the convection heat transfer performance of piezoelectric fan for cooling of electronic devices, this study presents a new type of heat sink for the piezoelectric fan system. Piezoelectric fan generates much better cooling performance than natural convection with minimal power consumption and small dimension and it can be applied to small electronic devices such as mobile or small chips.
Piezoelectric fan differ from conventional rotational fan system by its unique flow type. That flow is induced by amplified vibration of piezoelectric material and act like very fast hand flap. And the flow consisted by two type of flows. The jet flow from in front of piezoelectric fan is much faster and used main cooling method and the rotating eddy flows around piezoelectric fan are the most volume of piezoelectric fan induced flow. But this eddy flows are diffuse to outer air and usually unutilized.
And most of implementation of piezoelectric cooling system that combination of piezoelectric fan with heat source of certain geometries (heat source surface) has plain surface. That means many piezoelectric fan systems are on the simple surface and small heat transfer area. Therefore, piezoelectric fan’s performance is limited by its small heat transfer area.
This study suggests new type of heat sink geometry for the piezoelectric fan system that can widen the heat surface and flow velocity with simple geometrical improvement. And this research aided by numerical method that improve research efficiency and verified by experimental manner.
The general CFD code of FLUENT™ and its Dynamic Mesh Modeling (DDM) capability is applied to describe the deforming of boundary wall that regarded as cantilevered piezoelectric fan. DDM is utilized by FLUENT™ User Defined Function and it describes simple 2nd-order of deforming equation of boundary wall for the time variable and magnitude of x coordinate.
The final ‘Improved’ design of new heat sink for piezoelectric fan shows 39.3% of improvement of cooling performance than conventional systems in the 8000 of heat flux and 26.9% of improvement in the 13,333 of heat flux.
Author(s)
박지호
Issued Date
2012
Awarded Date
2012. 2
Type
Dissertation
Keyword
압전소자 압전팬 CFD FLUENT Piezoelectirc fan
Publisher
부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/9059
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001965792
Alternative Author(s)
Park, Ji Ho
Affiliation
부경대학교
Department
대학원 냉동공조공학과
Advisor
김은필
Table Of Contents
ABSTRACT iv
Nomenclature vi

제 1 장 서론 1
1.1 연구배경 1
1.2 압전소자 팬의 기술개요 3
1.2.1 Piezoelectric material 3
1.2.2 Piezoelectric fan 5
1.2.3 압전소자 팬의 특징 5
1.3 국내외 연구 동향 8
1.4 연구목적 및 연구방법 9
1.4.1 압전소자 팬의 수치해석 모델 확립 9
1.4.2 압전소자 팬의 히트싱크 설계 9

제 2 장 수치해석 방법 11
2.1 Pre-processing 11
2.1.1 Domain 12
2.1.2 Mesh(conputational domain) 13
2.2 Dynamic mesh model 15
2.2.1 Dynamic mesh 15
2.2.2 Dynamic mesh methods 15
2.2.3 User Defined Function을 통한 wall-boundary의 변형 17
2.3 Solver Execution 18
2.3.1 유체유동의 지배 방정식 18
2.3.2 경계 조건 및 Flow Configuration 20
2.4 Post Processing 21
2.4.1 Mesh independence, time step-sensitivity 21
2.4.2 Transient 솔루션의 내부 변수 값을 바탕으로 한 Error analysis 21

제 3 장 실험 장치 및 실험 방법 23
3.1 실험 장치 23
3.2 실험 방법 및 조건 26
3.3 데이터 처리 방법 26

제 4 장 압전소자 팬의 방열판 설계 28
4.1 압전소자 팬 유동의 특성 28
4.2 압전소자 팬의 방열판 디자인 30
4.3 수치해석용 도메인 30
4.4 실험용 방열판 제작 32

제 5 장 결과 및 고찰 33
5.1 수치해석 모델의 신뢰성 평가 33
5.1.1 Discretization 33
5.1.2 Convergence Issues 36
5.1.3 Grid Idependency 37
5.2 수치해석 결과 38
5.2.1 4면체의 벽과 slit hole이 미치는 영향 38
5.2.2 parametric study 39
5.3 실험결과 42

제 6 장 압전소자 팬용 방열판 디자인의 개선 44
6.1 새로운 방열판 디자인의 형상 44
6.2 새로운 방열판에 대한 실험 결과 44

제 7 장 결론 48

참고 문헌 49
Degree
Master
Appears in Collections:
대학원 > 냉동공조공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.